Welcome
Public Information Centre
June 20th, 2018
The purpose of this Public Information Centre (PIC) is to:

- Introduce the project and the need to undertake improvements to the Broughdale Dyke that will provide flood protection to existing properties and manage the long term stability of the earth structure;
- Provide an overview of previous work completed to date and the Class Environmental Assessment process;
- Describe existing and future conditions;
- Present the alternative solutions and recommendations for addressing long term flood protection; and
- Introduce the project team and get your feedback;

Please take a comment form and a pen. As you review the information presented today, we encourage you to ask questions and provide feedback.
Upper Thames River Conservation Authority
and The City of London - Broughdale Dyke

Municipal Class Environmental Assessment
Schedule ‘B’

Municipal Class Environmental Assessment Schedule ‘B’ Process

• The project is following the Municipal Class Environmental Assessment (EA) Schedule B process (2015).
• Schedule B projects must follow Phase 1 and 2 as shown below.
• At the end of the EA process, a Project File will be prepared for public review and comment.
Upper Thames River Conservation Authority and The City of London - Broughdale Dyke
Municipal Class Environmental Assessment
Schedule ‘B’

Proactive Planning: In response to major floods in 1937, the UTRCA and City of London developed and maintain a system of flood protection dykes along the Thames River. The dykes have done a good job of protecting people and properties in areas that would otherwise be at significant risk of flooding.

Broughdale Dyke: Broughdale dyke is part of a larger flood control network that includes other dykes, flood control dams, and a flood forecasting and warning system.

UTRCA/City Dyke System Performance Monitoring and Maintenance: Over the past decades the UTRCA/City have completed a number of activities, studies and investigations to ensure that the earth dyke system is maintained and performs as intended.

London Earth Dykes Stability Review: The London Earth Dykes Stability Review was completed in 2013. The review assessed the stability of the Thames River dykes and provided Preliminary Dyke Standards Recommendations in the absence of provincial dyke standards which are intended to provide a consistent approach for consideration during future work on the dykes while also considering climate change.

Why this Study and Why Now?
The Feasibility Study looked at opportunities to address the preliminary design standards and improve slope stability at the 7 Earth Dykes in London including the Broughdale Dyke

The Study Included:
• Review of storm sewer capacity and potential interior flooding;
• Feasibility assessment of dyke management alternatives including maintaining, regrading, reconstructing and raising the dyke;
• Detailed cost estimates for management alternatives;
• Recommendation to undertake an Environmental Assessment to determine the preferred alternative.

Existing Conditions Flood Risk Map

Feasibility Study of Management Alternatives for the London Earth Dykes
Broughdale Dyke Study Area

Broughdale Dyke is part of a large City wide network of flood control structures
What is the Problem?

Stability and condition assessments of the Broughdale Dyke conducted in 2011 identified the dyke to be in fair to poor condition with severe stability issues. There are a total of 191 properties that lie within the 250 year regulatory flood limit. The dyke currently only provides protection to the 100 year event, putting residential properties at risk of flooding. These risks include damages to residential buildings and public infrastructure and, most importantly, loss of life.

What is the Opportunity?

The Municipal Class EA planning process will provide an opportunity to confirm the long term management plan for the dyke including stability of the dyke in consideration of public safety and preliminary design standards.
The dyke structure is located in a highly populated and established area that consists of a range of land uses including low to high density residential, institutional (Kings University College) and recreational (Ross Park and the Thames Valley Parkway).

Existing Land Use Designations (Map 1 – London Plan)
Stage 1 Archaeological Assessment

A Stage 1 background study of the Broughdale Dyke study area has determined a high potential for the recovery of archaeological resources in undisturbed areas. Archaeological potential is removed where land development has occurred including the earth fill sections of the dyke. All potentially undisturbed areas must be subject to Stage 2 field survey.

Based on these findings, a Stage 2 archaeological assessment is recommended for all land within the study area that has been identified as retaining archaeological potential (shown in green below)
The listed Species at Risk have potential to occur in the study area based on the available habitat. Species present require confirmation through further ecological investigations.
Upper Thames River Conservation Authority and The City of London - Broughdale Dyke

Municipal Class Environmental Assessment Schedule ‘B’

Alternative 1 – Do Nothing

An alternative to be considered in the evaluation of alternatives for all Class EA’s. No Improvements would be undertaken to address the current requirements. It represents what would likely occur if none of the alternatives were implemented. It does not address the Problem and Opportunity Statement and is therefore not considered further. *(Screened from further evaluation due to High Socio-Economic impacts)*

Alternative 2 – Repair and Maintain Dyke in its Existing Location

<table>
<thead>
<tr>
<th>ID</th>
<th>Proposed Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Remove/Relocate trees planted on dyke.</td>
</tr>
</tbody>
</table>
| 2 | - Monitor and remove overgrown vegetation.
 - Remove hazard trees.
 - Relocate hydro poles. |
| 3 | - Replace the existing railway tie retaining walls.
 - Regrade where possible.
 - Remove hazard trees and clear vegetation from dyke crest. |
Alternative Solutions

Alternative 3 – Reconstruct the Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)

<table>
<thead>
<tr>
<th>ID</th>
<th>Proposed Works</th>
</tr>
</thead>
</table>
| 1 | - Raise dyke approximately 0.5 m to 1.0 m
 - Dyke slopes graded to 3:1
 - Remove/Relocate trees planted on dyke |
| 2 | - Remove existing fill and replace with engineered fill
 - Raise dyke approximately 1.0 m to 2.0 m
 - Access to be provided off Raymond Avenue
 - Construct flood wall along Raymond Avenue
 - Monitor and remove overgrown vegetation
 - Remove hazard trees
 - Relocate hydro poles. |
| 3 | - Property acquisition or easement would likely be required at 257 Bernard Street
 - Remove existing fill and replace with engineered fill
 - Regrade top of dyke to remove low points and raise dyke approximately 1.5 m
 - Consider constructing a 3.5 m access path on top of dyke
 - Setback dyke at 3:1 slope from existing bank or provide retaining walls
 - Replace the existing gabion basket and railway tie retaining walls
 - Repair and regrade slopes
 - Provide toe erosion protection as required
 - Remove hazard trees and clear vegetation from dyke crest |
| 4 | - Extend dyke along Meadowdown Drive
 - Raise dyke between 1.0 m and 1.5 m. |
Alternative 4 – Raise and Extend the Dyke to the 250-year event plus 0.9 m Freeboard

<table>
<thead>
<tr>
<th>ID</th>
<th>Proposed Works</th>
</tr>
</thead>
</table>
| 1 | - Raise dyke approximately 1.0 m
 - Dyke slopes graded to 3:1
 - Remove/Relocate trees planted on dyke |
| 2 | - Remove existing fill and replace with engineered fill
 - Raise dyke approximately 2.0 m
 - Access to be provided off Raymond Avenue
 - Construct flood wall along Raymond Avenue
 - Monitor and remove overgrown vegetation
 - Remove hazard trees
 - Relocate hydro poles. |
| 3 | - Property acquisition or easement would likely be required at 257 Bernard Street
 - Remove existing fill and replace with engineered fill
 - Regrade top of dyke to remove low points
 - Consider constructing a 3.5m access path on top of dyke
 - Setback dyke at 3:1 slope from existing bank or provide retaining walls
 - Replace the existing gabion basket and railway tie retaining walls
 - Repair and regrade slopes
 - Provide toe erosion protection as required
 - Remove hazard trees and clear vegetation from dyke crest |
| 4 | - Extend the dyke upstream along the Thames on Kings College property or along Meadowdown Drive
 - Earth fill dyke or flood wall
 - 3:1 Slope preferred for earth fill dyke.
 - Raise dyke 2.0 m |
Alternative 5 – Decommission Dyke

A long term decommissioning of the dyke. Decommissioning involves retaining the structure in the long term until all at risk properties can be voluntarily acquisitioned - 191 residential buildings including high rise structures.

Screened from further evaluation due to:

- Extensive land acquisition
- Social Impacts from displacement of the Broughdale Community
Alternative 6 – Establish a Flood Protection Landform

A Flood Protection Landform is an earthen berm that is intended to form a permanent part of the landscape. Seepage is one of the primary modes of failure of a dyke. Therefore, Flood Protection Landforms are very wide and flat to prevent water seepage. Additionally, nothing can be constructed on or through the landform that would promote seepage, including roads, buildings, and sewers. By reducing the potential for seepage related failure Flood Protection Landforms provide a longer term solution for flood protection compared to traditional dykes.

Screened from further evaluation due to:

- Extensive land acquisition and displacement of Broughdale Community
- Prohibitive Construction Costs
- Provincial Approvability

Approximately 40-45m
Approximately 100-125m

FLOOD PROTECTION LANDFORM TYPICAL GENERAL DIMENSIONS
Aquatic Vegetation and Species
- Continued regular maintenance (replacement of retaining wall) resulting in minor impacts.
- Typical in-water work timing window for this area is July 1 to March 31 (i.e., when in-water work is permissible).
- Works within UTRCA regulated limits will require permitting.
- Confirmed habitat for Silver Shiner, Black Redhorse and Wavy-rayed Lampmussel within the Thames River.
- Consultation with MNRF and DFO will be necessary to identify approvals requirements.

Terrestrial Vegetation and Species
- No new footprint impacts since a new structure is not being built.
- Vegetation removal, including minor tree pruning and potential removals (hazard trees) may be required as part of continued regular maintenance.
- Tree pruning/vegetation removals will be required to occur outside of the Breeding Bird timing window of April 1st to August 31st.
- Candidate habitat for: Wood Thrush, Monarch, Bald Eagle, Woodland Vole, Climbing Prairie Rose, Snapping Turtle, Crooked-stem Aster, Eastern Ribbonsnake.

Impacts to Species at Risk
- Continued regular maintenance (hazard tree removal, replacement of rip rap, and replacement of failing gabion retaining wall) resulting in minor impacts.
- In water works related to rip rap and retaining wall replacement will require SAR federal and provincial permitting.
- Confirmed Habitat from Dougan & Associates (2015): Bank Swallow, Barn Swallow, Chimney Swift, Eastern Flowering Dogwood. (All bird SAR were observed within foraging habitat. No nesting habitat was observed.)
- Through MNRF correspondence there is confirmed habitat for Spiny Softshell, Chimney Swift Queensnake, Silver Shiner, Black Redhorse and Wavy-rayed Lampmussel.

Repair and Maintain Dyke in Existing Location

Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)

Raise and Extend Dyke to the 250-year event plus 0.9 m Freeboard

NATURAL ENVIRONMENT

SUMMARY RATING

<table>
<thead>
<tr>
<th>Option</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair and Maintain Dyke in Existing Location</td>
<td>Minor to moderate impact with reconstruction of dyke and installation of toe erosion protection.</td>
<td>Minor to moderate impact with reconstruction of dyke.</td>
<td>Minor to moderate impact with raising and reconstruction of dyke.</td>
</tr>
<tr>
<td>Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)</td>
<td>Moderate impact given clearing and construction activities required to reconstruct dyke.</td>
<td>Moderate impacts due to clearing and construction activities required to reconstruct dyke.</td>
<td>Moderate Impact given clearing and construction activities required to reconstruct dyke.</td>
</tr>
<tr>
<td>Raise and Extend Dyke to the 250-year event plus 0.9 m Freeboard</td>
<td>Moderate impacts due to clearing and construction activities required to reconstruct dyke.</td>
<td>Moderate impacts due to clearing and construction activities required to reconstruct dyke.</td>
<td>Moderate Impact given clearing and construction activities required to reconstruct dyke.</td>
</tr>
</tbody>
</table>

EVALUATION CRITERIA

- **NATURAL ENVIRONMENT**
 - **Aquatic Vegetation and Species**
 - **Terrestrial Vegetation and Species**
 - **Impacts to Species at Risk**

LEGEND

- Low Impact
- Low to Moderate Impact
- Moderate Impact
- Moderate to High Impact
- High Impact
- Most Preferred Option
EVALUATION CRITERIA

Alternative 2
Repair and Maintain Dyke in Existing Location
- Replacement of existing gabion and railway tie walls, with armour stone and or sheet pile.
- Hydro lines located on dyke need to be relocated.
- Does not meet the 250-year level of service.
- No climate change resilience.
- Does not meet the stability criteria due to steep slopes.

Alternative 3
Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)
- Replacement of existing gabion and railway tie wall, with armour stone and or sheet pile.
- Hydro poles need to be relocated.
- Considerable fill material required to raise the dyke by 1.0m – 2.0m. Alternatively, flood walls would be required.
- Meets stability design criteria.
- Provides protection to the 250-year event but may not provide recommended freeboard.
- May not provide climate change resiliency.
- Raised dyke section with earth fill or flood wall. Flood wall could be either sheet pile or concrete wall with footings.

Alternative 4
Raise and Extend Dyke to the 250-year event plus 0.9 m Freeboard
- Replacement of existing gabion and railway tie wall, with armour stone and or sheet pile.
- Hydro poles need to be relocated.
- Considerable fill material required to raise the dyke by 1.0m – 2.0m. Alternatively, flood walls would be required.
- Meets stability criteria.
- Provides protection to the 250-year event, plus freeboard.
- Freeboard provides climate change resilience.
- Flood walls required to meet stability criteria due to steep slopes and minimum safety factor.

Technical Summary Rating

<table>
<thead>
<tr>
<th>TECHNICAL SUMMARY RATING</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
</table>

Technical

Design:
- Materials
- Utility Impacts
- Meets draft guideline standards for level of service
- Meets stability criteria
- Ability to accommodate impacts from Climate Change-Flexibility of Design
 (e.g., ability to increase berm height)

Construction:
- Implementation
- Excavation and groundwater control
- Noise / Vibration during construction
- Construction access

Operation and Maintenance:
- Ease of access
- Vegetation establishment (width and maintenance)

Legend

- **Low Impact**
- **Low to Moderate Impact**
- **Moderate Impact**
- **Moderate to High Impact**
- **High Impact**
- **Most Preferred Option**
EVALUATION CRITERIA

Alternative 2
Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)

Social / Cultural

- **Public Health and Safety:**
 - Safety related risk of failure
 - Disruption / inconvenience to public during construction
 - Flood protection areas
 - Connectivity to multi-use paths

- **Archaeological Value:**
 - Five registered sites within 1km radius of the dyke.
 - Stage 2 archaeological assessment will be required for any undisturbed areas where construction will occur.

- **Property Impacts:**
 - Property acquisition at 257 Bernard Avenue if access path is provided between Bernard Avenue and Meadowtown Drive.
 - Easement required for 42 and 44 Mayfair Drive.
 - Raising dyke with flood wall will have property encroachment and property easement.
 - Easement required for 42 and 44 Mayfair Drive.

- **Aesthetics:**
 - Portions of dyke will be cleared of hazard trees and vegetation, and dyke will be widened. This may negatively impact aesthetics.
 - Extensive flood walls required that could negatively impact visual appearance of the surrounding area.
 - Flood wall would also break the natural aesthetics of the landscape for residents backing on to the river.
 - Flood walls could be subject to graffiti.

Disruption to multi-use path on dyke. Closure of path during construction will be required.

Alternative 3
Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)

Social / Cultural

- **Public Health and Safety:**
 - Will provide protection for the 250 year flood.
 - Will address all existing geotechnical instability issues.
 - Will meet stability design standards.
 - Will reduce flood risk for the Broughdale area, although some egress and access issues will remain along Richmond Street.

- **Archaeological Value:**
 - Five registered sites within 1km radius of the dyke.
 - Stage 2 archaeological assessment will be required for any undisturbed areas where construction will occur.

- **Property Impacts:**
 - Property acquisition at 257 Bernard Avenue if access path is provided between Bernard Avenue and Meadowtown Drive.
 - Easement required for 42 and 44 Mayfair Drive.
 - Easement required for 42 and 44 Mayfair Drive.

- **Aesthetics:**
 - Portions of dyke will be cleared of hazard trees and vegetation, and dyke will be widened. This may negatively impact aesthetics.
 - Extensive flood walls required that could negatively impact visual appearance of the surrounding area.
 - Flood wall would also break the natural aesthetics of the landscape for residents backing on to the river.
 - Flood walls could be subject to graffiti.

Disruption to multi-use path on dyke. Closure of path during construction will be required.

Alternative 4
Raise and Extend Dyke to the 250-year event plus 0.9 m Freeboard

Social / Cultural

- **Public Health and Safety:**
 - Will provide protection for the 250-year flood.
 - Will address all existing geotechnical instability issues.
 - Will meet stability design standards.
 - Will reduce flood risk for the Broughdale area, although some egress and access issues will remain along Richmond Street.

- **Archaeological Value:**
 - Five registered sites within 1km radius of the dyke.
 - Stage 2 archaeological assessment will be required for any undisturbed areas where construction will occur.

- **Property Impacts:**
 - Property acquisition at 257 Bernard Avenue if access path is provided between Bernard Avenue and Meadowtown Drive.
 - Easement required for 42 and 44 Mayfair Drive.
 - Easement required for 42 and 44 Mayfair Drive.

- **Aesthetics:**
 - Portions of dyke will be cleared of hazard trees and vegetation, and dyke will be widened. This may negatively impact aesthetics.
 - Extensive flood walls required that could negatively impact visual appearance of the surrounding area.
 - Flood wall would also break the natural aesthetics of the landscape for residents backing on to the river.
 - Flood walls could be subject to graffiti.

Disruption to multi-use path on dyke. Closure of path during construction will be required.

SOCI-ECONOMIC / CULTURAL ENVIRONMENT SUMMARY RATING

Legend

- **Low Impact**
- **Low to Moderate Impact**
- **Moderate Impact**
- **Moderate to High Impact**
- **High Impact**

Most Preferred Option

- **Alternative 3**
- **Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)**

Notes:
- London Plan identifies parkland, residential and Rapid Transit Corridor land use within the study area.
- London Plan identifies parkland, residential and Rapid Transit Corridor land use within the study area.
- London Plan identifies parkland, residential and Rapid Transit Corridor land use within the study area.
- London Plan identifies parkland, residential and Rapid Transit Corridor land use within the study area.

Additional Information:
- Ongoing consultation with First Nations communities to understand concerns associated with the proposed works.
- Ongoing consultation with First Nations communities to understand concerns associated with the proposed works.
- Ongoing consultation with First Nations communities to understand concerns associated with the proposed works.
- Ongoing consultation with First Nations communities to understand concerns associated with the proposed works.
EVALUATION CRITERIA

ECONOMIC / FINANCIAL

<table>
<thead>
<tr>
<th>EVALUATION CRITERIA</th>
<th>Alternative 2: Repair and Maintain Dyke in Existing Location</th>
<th>Alternative 3: Reconstruct Dyke to the 250-year event plus Maximum Feasible Freeboard (0.3 m to 0.9 m)</th>
<th>Alternative 4: Raise and Extend Dyke to the 250-year event plus 0.9 m Freeboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Damages:</td>
<td>• Total damages to structures and contents for the regulated 250-year event are $6,500,000.</td>
<td>• Flood damages for the regulated 250-year event are prevented by raising the dyke.</td>
<td>• Flood damages for the regulated 250-year event are prevented by raising the dyke.</td>
</tr>
<tr>
<td></td>
<td>• Additional damages to roads and utilities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indirect costs associated with the 250-year event have not been calculated. These include loss of business revenue, reduction in property value, increase insurance costs, physical or physiological trauma and loss of life.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation Costs:</td>
<td>• Moderate total capital costs.</td>
<td>• High total capital costs.</td>
<td>• Highest total capital costs.</td>
</tr>
<tr>
<td></td>
<td>• Estimated at $2,000,000.</td>
<td>• Estimated at $5,000,000 to $7,000,000.</td>
<td>• Estimated at $8,000,000 to $8,000,000.</td>
</tr>
<tr>
<td>Operation and Maintenance:</td>
<td>• Moderate total operating and maintenance costs.</td>
<td>• Moderate total operating and maintenance costs.</td>
<td>• Moderate total operating and maintenance costs.</td>
</tr>
<tr>
<td></td>
<td>• Highest operation and maintenance costs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Comparison:</td>
<td>• Moderate Cost.</td>
<td>• High capital cost, reduced maintenance costs.</td>
<td>• High capital cost, reduced maintenance costs.</td>
</tr>
<tr>
<td></td>
<td>• High flood damages.</td>
<td>• Significant reduction in flood damage.</td>
<td>• Significant reduction in flood damage.</td>
</tr>
</tbody>
</table>

ECONOMIC / FINANCIAL SUMMARY RATING

<table>
<thead>
<tr>
<th>OVERALL ALTERNATIVE RATING</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Preferred Alternative:</td>
<td>• Reduces flood damages for existing development within the Broughdale Area</td>
<td>• Meets stability criteria</td>
<td>• Provides climate change resiliency</td>
</tr>
</tbody>
</table>

Legend

- Low Impact
- Low to Moderate Impact
- Moderate Impact
- Moderate to High Impact
- High Impact
- Most Preferred Option
Alternative 4 – Raise and Extend the Dyke to the 250-year event plus 0.9 m Freeboard

<table>
<thead>
<tr>
<th>ID</th>
<th>Proposed Works</th>
</tr>
</thead>
</table>
| 1 | - Raise dyke approximately 1.0 m
- Dyke slopes graded to 3:1
- Remove/Relocate trees planted on dyke |
| 2 | - Remove existing fill and replace with engineered fill
- Raise dyke approximately 2.0 m
- Access to be provided off Raymond Avenue
- Construct flood wall along Raymond Avenue
- Monitor and remove overgrown vegetation
- Remove hazard trees
- Relocate hydro poles. |
| 3 | - Property acquisition or easement would likely be required at 257 Bernard Street
- Remove existing fill and replace with engineered fill
- Regrade top of dyke to remove low points
- Consider constructing a 3.5m access path on top of dyke
- Setback dyke at 3:1 slope from existing bank or provide retaining walls
- Replace the existing gabion basket and railway tie retaining walls
- Repair and regrade slopes
- Provide toe erosion protection as required
- Remove hazard trees and clear vegetation from dyke crest |
| 4 | - Extend the dyke upstream along the Thames on Kings College property or along Meadowdown Drive
- Earth fill dyke or flood wall
- 3:1 Slope preferred for earth fill dyke.
- Raise dyke 2.0 m |
Design:
• Coordinate design with the ongoing Thames Valley Parkway Connection bridge

Natural Environment:
• Work with UTRCA/MNRF/DFO/City of London to address potential impacts to natural features;
• All regulatory requirements to protect the environment are followed;
• Construction occurs outside of the nesting bird window;
• Construction occurs outside of fish spawning

Social Environment:
• Access to existing park amenities, businesses, institutions and commercial areas are maintained (where possible) during and after construction.
• Meet with affected property owners during detailed design to explain how and when construction is expected to take place.
• Comply with City of London noise by-law (day time works)
• Provide advanced notification to affected property owners prior to construction, including estimated timing/durations and project contact information for asking questions and requesting information.

Archeological:
• A Stage 2 archaeological assessment must be conducted for all lands determined to retain archaeological potential that will be used for construction or that will be subject to ground disturbance.

Economic:
• Ensure UTRCA and City resources are allocated effectively.

Restoration:
• All disturbed areas will be restored.

Monitoring:
• Monitor post construction performance to ensure effectiveness.
Next Steps

Summer 2018
- Consider all questions and comments received from this PIC and provide follow-up as needed
- Meet with key agencies and stakeholders to receive feedback

Late 2018
- File EA Report for 30-day public review period

2019 and beyond
- Apply for funding
- Detailed Design including approvals (possibly 2020)
- Tender
- Construction
- Post construction monitoring

The Upper Thames River Conservation Authority and the City of London will implement the recommended solution pending completion of the Environmental Assessment Study, further regulatory and budget approvals and the acquisition of appropriate funding.
Thank You for Attending

We appreciate the time you have taken to learn more about the Broughdale Dyke Municipal Class EA. To stay involved and receive further updates as the Project progresses:

• Join our mailing list – leave us an email or mailing address

Please contact the Consultant Project Team representatives with any additional comments or questions by July 6, 2018:

Adam Spargo, B.Sc
Project Manager
AECOM
519-963-5921
Adam.Spargo@aecom.com

Paul Adams, CPT
Environmental Planner
AECOM
519-963-5873
Paul.adams2@aecom.com

Thank You for Attending