17 Trenchless Technologies (for new construction)

17.1 APPLICATION.. 1
17.2 GEOTECHNICAL BASELINE REPORT (GBR).. 1
17.3 TRENCHLESS DESIGN REQUIREMENTS... 1
 17.3.1 Items to be Considered by the Design Engineer as Part of the Design Process 1
 17.3.2 Information to be Included on the Construction Servicing Drawings/Tender Documents . 2
 17.3.3 Items to be Considered in the Contract Tender Documents... 2
 17.3.4 Record Drawing.. 3
17 Trenchless Technologies (for new construction)

17.1 APPLICATION

Trenchless installation of gravity sewers, watermains and forcemains is becoming more prevalent as a design alternative as the capabilities of the trenchless technologies advance. Trenchless Technologies can be a requirement of the City or proposed by a Consulting Engineer, as a viable alternative, given the particular design challenges for the specific site. Trenchless applications allow for the installation of the infrastructure with minimal disturbance of the surface area. Typical examples of where Trenchless Technologies may be viable alternatives to conventional methods include the installation of servicing through Environmentally Significant Areas (ESA’s), under major roadways or railway lines, in built up areas where space is limited and the social costs would be excessive or even residential streets with mature trees.

In the past, when a Trenchless Technology was proposed, the Design Engineer relied heavily on the expertise of the contractor for any given scenario. As new methods come on stream, and the technologies are advancing, the onus will be shifting from the Contractor to the Design Engineer to design specific elements of the trenchless installations. It is important that the Design Engineer be qualified to design and oversee (certify) the specific types of technology being proposed.

17.2 GEOTECHNICAL BASELINE REPORT (GBR)

A Geotechnical Baseline Report (GBR) is required when a Trenchless installation is being considered. The GBR will provide detail information related to the anticipated groundwater and soils conditions, including defining and assigning the various risks and liabilities to the Owner and/or the Contractor associated with the possible changes in ground conditions that may be encountered on the proposed alignment. This information will help the designer and contractor determine the appropriate trenchless method(s) for the proposed design application. The Design Engineer should provide necessary design parameters for the trenchless installation.

17.3 TRENCHLESS DESIGN REQUIREMENTS

17.3.1 Items to be Considered by the Design Engineer as Part of the Design Process

As a minimum, the Design Engineer is to give due regard for designing the following elements of an appropriate Trenchless Installation:

i) Pipe design (casing and/or carrier pipe as applicable)
 a) Material, along with specific characteristics of this material
 b) Dimensional Ratio (pulling forces, live loads, dead loads – as applicable)
 c) Diameter
 d) Alignment
 e) Radius of Curvature (if applicable)
 f) Grade

ii) Adequate room for staging areas, pipe assembly, entry and exit portals (as appropriate)
iii) Blocking and grouting requirements (of carrier pipe within a casing pipe)
iv) Slurry/spoil disposal
v) Erosion/Sediment Control Measures
vi) Bore Geometry
vii) Annular Space Plug
viii) GBR Recommendations
ix) Define the need for Dewatering and/or Permit to Take Water (if applicable)
x) Timing as it relates to other activities, i.e. order of operations
xi) Prequalification of the contractor

17.3.2 Information to be Included on the Construction Servicing Drawings/Tender Documents

This information should be shown on the engineering drawings and/or form part of the Tender Documents:
i) Pipe design (casing and/or carrier pipe)
 a) Diameter
 b) Alignment
 c) Grade (plus or minus if applicable and acceptable)
ii) Adequate room for staging areas, pipe assembly, design of entry and exit portals
 (as appropriate)
iii) Erosion/Sediment Control Measures
iv) GBR Recommendations
v) Define the need for Dewatering and/or Permit to Take Water (if applicable)

17.3.3 Items to be Considered in the Contract Tender Documents

Consideration should be given to addressing and/or including the following items as part of the contract tender:
i) a tender item for a 911 emergency shaft
ii) a tender item for “Frac Out” mitigation measures
iii) cutter head requirements
iv) over cut dimensions
v) Swab run (depending on diameter and site specifics)
vi) Bentonite lubrication
vii) Machine launch & retrieval (groundwater impacts)
viii) Annular space grouting
ix) Settlement/heave
x) Mitigation/contingency plans
xi) Damaged Pipe
xii) Tracking requirements
xiii) Spoil/slurry disposal
xiv) Methods of restraint against pull-back (as applicable)
xv) Complete GBR
xvi) Quality control (i.e. – videos, joint testing, etc. as appropriate for the technology being installed)
17.3.4 Record Drawing

As part of the Record Drawing submission, at the conclusion of the project, the drawings are to be updated to show what was installed including:

i) Identify method of installation

ii) Pipe design (casing and/or carrier pipe as applicable)
 a) Material
 b) Dimensional Ratio
 c) Diameter
 d) Alignment
 e) Grade

iii) Blocking and grouting measures (as applicable)

iv) Location of staging areas, entry/exit portals – in case of settlement issues later