2 TRANSPORTATION

2.1 ROADS DESIGN ... 1
 2.1.1 Design Speed ... 1
 2.1.2 Centreline Radii ... 1
 2.1.3 Radii for Curb & Gutter .. 2
 2.1.4 Lane Widths .. 3
 2.1.5 Right of Way, Pavement and Boulevard Widths .. 3
 2.1.6 K Values .. 4
 2.1.7 Maximum and Minimum Road Grades .. 5
 2.1.8 Vertical Curves ... 5
 2.1.9 Drainage Issues ... 5
 2.1.10 Rural Asphalt Lift Edge Taper .. 6
 2.1.11 Pavement Structure ... 7
 2.1.12 Transition Between Road Types .. 8
 2.1.13 Access and Sight Distance ... 8
 2.1.14 Length of Turning Lanes ... 9
 2.1.15 Sidewalks, Bicycle Lanes and Pedestrian Walkways ... 10
 2.1.16 Curb and Gutter ... 13
 2.1.17 Erosion Control Blanket ... 14
 2.1.18 Pavement Markings ... 15
 2.1.19 Pavement Reinforcement ... 15
 2.1.20 Roadside Protection ... 15
 2.1.21 Sediment & Erosion Control ... 15
 2.1.22 Bus Bays ... 15
 2.1.23 Access Configurations .. 16

2.2 INTERSECTIONS .. 16
 2.2.1 At Grade Road/Rail Intersections .. 16
 2.2.2 Road/Road Approach Grades ... 16
 2.2.3 Road Layouts .. 16

2.3 TRAFFIC CALMING .. 17
 2.3.1 Application and Methodology ... 17
 2.3.2 Signage .. 20
 2.3.3 Curb Extensions and Reduced Radii ... 20
 2.3.4.1 Speed Cushions .. 20
 2.3.4.2 Raised Crosswalk Design ... 20
 2.3.5 Diverter .. 21
 2.3.6 Rights In/Rights Out Raised Concrete Median (“Pork Chop”) 21
 2.3.7 Directional Closure ... 21
 2.3.8 In/Rights Out (“Banana”) Island .. 22
 2.3.9 Roundabouts .. 22
2.3.10 Raised Median Traffic Islands ... 22
2.3.10.1 Raised Intersections ... 23
2.3.11 Subdivision Collector Road Entrance 23
2.3.12 Temporary Measures ... 23
2.3.13 Box Forms ... 24

2.4 TRAFFIC SIGNALS ... 24
2.4.1 Traffic Control Signal Warrants .. 24
2.4.2 Intersection Pedestrian Signal (I.P.S.) Warrants 24
2.4.3 Electrical Design ... 24
2.4.4 Signal Plant Design .. 25
2.4.5 Pavement Markings .. 25
2.4.6 Materials ... 25

2.5 STREET LIGHTING .. 25
2.5.1 Warrants ... 25
2.5.2 Materials ... 25
2.5.3 Street Light Designs ... 26
2.5.4 Walkway Lighting Design ... 27
2.5.5 Residential Street Light Installation & Inspection Guidelines 27

2.6 CONSTRUCTION SIGNAGE .. 28
2.6.1 General ... 28
2.6.2 Traffic Management Plans ... 28
2.6.2.1 Definition .. 28
2.6.2.2 Traffic Control Plan vs. Traffic Management Plan 28
2.6.2.3 When is a TMP Required? .. 28
2.6.2.4 Traffic Management Submission Requirements 29
2.6.2.5 Specific Requirements of the Plan during Road Resurfacing or Reconstruction .. 30
2.6.3 Detour Plans ... 31
2.6.4 Traffic Control Plan ... 31
2.6.5 Pedestrian Safety .. 31
2 TRANSPORTATION

2.1 ROADS DESIGN

2.1.1 Design Speed

Design speed shall be based on the following chart:

<table>
<thead>
<tr>
<th>Posted Speed (km/h)</th>
<th>Design Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 and below</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

In cases where development will lead to a lowered posted speed, it may be possible to use the future reduced posted speed.

2.1.2 Centreline Radii

a) Freeways, Expressways, and Arterials

Centreline horizontal curves for freeways, expressways and arterials shall be derived from Table C3-3 of the Geometric Design Standards for Ontario Highways. This chart is a summary of typical design speeds versus standard superelevation grades taken from C3-3.

<table>
<thead>
<tr>
<th>Design Speed (km/h)</th>
<th>Normal</th>
<th>Reverse Crown 2%</th>
<th>Superelevation 4%</th>
<th>Superelevation 6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>700</td>
<td>500</td>
<td>160</td>
<td>55</td>
</tr>
<tr>
<td>50</td>
<td>1100</td>
<td>750</td>
<td>250</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>1600</td>
<td>1100</td>
<td>365</td>
<td>130</td>
</tr>
<tr>
<td>70</td>
<td>2200</td>
<td>1500</td>
<td>500</td>
<td>190</td>
</tr>
<tr>
<td>80</td>
<td>3000</td>
<td>2000</td>
<td>675</td>
<td>250</td>
</tr>
<tr>
<td>90</td>
<td>3500</td>
<td>2500</td>
<td>875</td>
<td>340</td>
</tr>
<tr>
<td>100</td>
<td>4500</td>
<td>3500</td>
<td>1100</td>
<td>420</td>
</tr>
</tbody>
</table>

1. Source: Geometric Design Standards for Ontario Highways – Table C3-3
b) Collector and Local Streets For new Construction

i) Collector roads and local streets shall have centerline horizontal curves which meet or exceed the City of London Standard “Minimum Centreline Radii of Curvature for Roads in Subdivisions”. Refer to Fig.2.1.

ii) Local Streets with bends of approximately 90 degrees are to have a minimum inside street-line radius in accordance with the following:

<table>
<thead>
<tr>
<th>Road Allowance</th>
<th>Street Line Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0m</td>
<td>9.0m</td>
</tr>
<tr>
<td>19.0m</td>
<td>9.5m</td>
</tr>
<tr>
<td>18.0m</td>
<td>10.0m</td>
</tr>
</tbody>
</table>

Note:
Bends of 90 degrees are only permitted on local streets. Refer to Fig.2.2

iii) For window street design information reference should be made to Section 1.1.3b).

c) Reconstruction Projects

The reconstruction of existing roads are to have the centreline horizontal alignments reviewed by the applicable Project Manager on a site specific basis.

2.1.3 Radii for Curb & Gutter

a) Intersection Radii for curb and gutter should be measured at edge of pavement. The following chart illustrates the required radii.

<table>
<thead>
<tr>
<th>From:</th>
<th>To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>Arterial</td>
</tr>
<tr>
<td>Collector</td>
<td>Collector</td>
</tr>
<tr>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Industrial Streets</td>
<td>Arterial 15m</td>
</tr>
<tr>
<td></td>
<td>Collector 15m</td>
</tr>
<tr>
<td></td>
<td>Local 7.5m</td>
</tr>
<tr>
<td></td>
<td>Industrial Streets 15m</td>
</tr>
</tbody>
</table>

b) Intersection Radii on Bus Routes & Daylighting Requirements

i) All intersections that have, or are proposed to be, future bus routes are to have 15.0m radii regardless of the classification of the road.

ii) a 3.0m daylighting triangle is required where a 15.0 m radius is needed at the intersection of a collector street to a collector street;

iii) a 6.0m daylighting triangle is required when on any road type connection to an arterial road.
c) Cul-de-sacs
 The minimum required radii of curvature for curb & gutters for a residential and industrial
 cul-de-sac are as per City of London SR-5.0 and SR-5.1.

2.1.4 Lane Widths

For multi-lane roads or channelized intersections, minimum lane widths shall be based on
the following chart.

<table>
<thead>
<tr>
<th>Description</th>
<th>Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Turn Lane</td>
<td>3.0</td>
</tr>
<tr>
<td>Left Turn Lane</td>
<td>3.0</td>
</tr>
<tr>
<td>Through Lane²</td>
<td>3.5</td>
</tr>
<tr>
<td>Curb Lane¹</td>
<td>4.0</td>
</tr>
<tr>
<td>2-way Left Turn Lane</td>
<td>4.0</td>
</tr>
</tbody>
</table>

1 – Use this width only if there is no bike lane on the road; when a bike lane is present use
the “Through Lane” width.

2 – No cap in rural areas where there are no curbs present, a 0.5m paved shoulder should
be constructed in conjunction with the Through Lane to provide a 4.0m paved surface.

NOTE: In situations with higher design speeds or higher road classifications, wider lane
widths may be required.

2.1.5 Right of Way, Pavement and Boulevard Widths

Pavement widths, right of way widths and boulevard widths shall be based on the following
chart. (edge of pavement to edge of pavement)

<table>
<thead>
<tr>
<th>Category</th>
<th>Usage²</th>
<th>R.O.W. (m)</th>
<th>Pavement (m)</th>
<th>Boulevard (m) Both Sides⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Freeway</td>
<td>90</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Expressway</td>
<td>60</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Arterial (2 way)</td>
<td>36</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Arterial (1 way)</td>
<td>26</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Primary Collector</td>
<td>26</td>
<td>Varies</td>
<td>6.0</td>
</tr>
<tr>
<td>Minor – Residential</td>
<td>Secondary Collector¹</td>
<td>21.5</td>
<td>9.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Local³ (greater than 60 units²)</td>
<td>20</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>(30 – 59 units)</td>
<td>19</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>(0-29 units)</td>
<td>18</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

<table>
<thead>
<tr>
<th>Minor - Residential Window Street</th>
<th>Local (greater than 60 units(^5))</th>
<th>15.5</th>
<th>8.0</th>
<th>5.0/2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(30 – 59 units(^5))</td>
<td>14.5</td>
<td>7.0</td>
<td>5.0/2.5</td>
</tr>
<tr>
<td></td>
<td>(0- 29 units(^5))</td>
<td>14.5</td>
<td>7.0</td>
<td>5.0/2.5</td>
</tr>
<tr>
<td>Minor-industrial and Commercial</td>
<td>Cul-de-sacs (less than 185m)</td>
<td>20</td>
<td>8.0</td>
<td>6.0</td>
</tr>
<tr>
<td>All other usages</td>
<td></td>
<td>21.5</td>
<td>9.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

1. The pavement width of Secondary Collectors shall be widened to 11m when they connect to Primary Collectors and Arterials. The storage length shall be 45m, taken from the end of the curb and gutter radii and the return taper should be 30m. The right-of-way at these widenings should be increased to 22.5 m.

2. The pavement width of Local Roads serving 60 units or more shall be widened to 10m when they connect to Primary Collectors and Arterials. The storage length shall be 30m, taken from the end of the curb and gutter radii and the return taper should be 30m. The right-of-way at these widenings should be increased to 21.5m.

3. For Road Classifications refer to Schedule C – Transportation Corridors – Official Plan of the City of London.

4. For reconstructed local roads: If the measurement of the existing road width is less than defined in the previous chart, then use the chart width. If the measurement of the existing road width is greater than 8m, then reconstruct at 8m.

5. Total number of units is based on number of units serviced by the local street including the window street units.

6. The boulevard widths are all to be in accordance with UCC-1M where applicable and UCC-2M. Refer to Section 1.1.3 a) for further UCC-1M design criteria and Section 1.1.3 b) for further UCC-2M design criteria.

2.1.6 K Values

On vertical curves, K factor shall be derived from the following table:

<table>
<thead>
<tr>
<th>Design Speed (km/h)</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crest Vertical Curve Minimum K(^1)</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Sag Vertical Curve Minimum K(^2)</td>
<td>18</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

1. Source: Geometric Design Standards for Ontario Highways, Table C4-6.
2. Source: Geometric Design Standards for Ontario Highways, Table C4-8.

For more information on design speed, refer to section 2.1.1.
2.1.7 Maximum and Minimum Road Grades

a) The maximum grades of roads shall be derived from the following table:

<table>
<thead>
<tr>
<th>Road Type</th>
<th>Maximum Grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway</td>
<td>3</td>
</tr>
<tr>
<td>Expressway</td>
<td>4</td>
</tr>
<tr>
<td>Arterial</td>
<td>6</td>
</tr>
<tr>
<td>Primary Collector</td>
<td>6</td>
</tr>
<tr>
<td>Secondary Collector</td>
<td>8</td>
</tr>
<tr>
<td>Local</td>
<td>8</td>
</tr>
</tbody>
</table>

The minimum road grades on all roads shall be 0.5%.

b) Flat see-saw profiles (identical high and low points) will not be allowed in either road profile designs or rear yard swale designs. See-saw profiles must slope in a cascade that allows major storm flows (Overland Flows) to drain along the road or lots to an acceptable Overland Flow Outlet.

c) In reconstruction projects within existing developed areas of the City, where the existing profile and driveway conditions cannot accommodate a cascading see-saw profile, the proposed profile must provide for adequate road drainage and be acceptable to the City Engineer.

2.1.8 Vertical Curves

When the numerical difference between two road grades exceeds 1% a vertical curve must be incorporated using the following criteria:
- Use k value from 2.1.6
- Vertical curve length shall be numerically greater than or equal to the design speed
- When matching new vertical curves into existing ones, match the K values to provide continuity.

2.1.9 Drainage Issues

a) Overland Flow Routes
 i. The design of all road profiles for New Development Projects are required to accommodate and direct major overland flow routes (OLFR) to an acceptable outlet. This design element is to be considered at the earliest stages of design, coordinating with the SWM Unit for information, assistance, review and acceptance, all to the satisfaction of the City Engineer.

 ii. The design of all major road profiles for Capital Works Projects (i.e. existing rural roads, Transportation EA’s, etc.) are required to consider major overland flow routes (OLFR) and where possible, accommodate and direct the OLF’s to an acceptable outlet. This design element is to be considered at the earliest stages of design, coordinating with the SWM Unit for information, assistance, review and acceptance,
all to the satisfaction of the City Engineer.

iii. In reconstruction projects within existing developed areas of the City, where the existing profile and driveway conditions cannot accommodate a formalized OLFR Route, the proposed profile must provide for adequate road drainage and be acceptable to the City Engineer.

iv. In order of preference, OLFR should be directed along:
 a) arterial and primary collector roads;
 b) secondary collector roads;
 c) local streets;
 d) parks, open spaces;

b) Culverts Under Roads
 i) New culverts or culverts that are being redesigned, replaced or impacted by road works/road widening must be designed to meet the hydraulic requirements established by MTO for inlet or outlet control culverts.

ii) City practice requires that culverts must convey the minimum storm events as specified below:

<table>
<thead>
<tr>
<th>Classification of Road</th>
<th>Minimum Storm Event To Be Conveyed By Culvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local & Secondary Collector</td>
<td>25 year storm event</td>
</tr>
<tr>
<td>Primary Collector & Arterial</td>
<td>50 year storm event</td>
</tr>
<tr>
<td>Bridges</td>
<td>100 year storm event or Regional storm event (250 year), subject to the UTRCA conditions</td>
</tr>
</tbody>
</table>

iii) Further design information regarding culvert designs can be found in Section 18 – Drafting and Design Requirements for New Subdivisions

iv) Information, coordination and acceptance for this design element must be received from the SWM Unit, and should be considered at the earliest stages of design.

c) In the areas where parking bays are introduced, subdrain pipes should be installed longitudinally for the entire length of the parking bay. For material type and construction details refer to SW-3.1, located in the Supplemental O.P.S.S Sewers & Water section of Standard Contract Documents for Municipal Construction Projects Manual.

2.1.10 Rural Asphalt Lift Edge Taper

On rural roads, asphalt in all lifts shall be laid so that the edge of pavement is inclined at a 45-degree angle. Base lifts of asphalt shall be laid wider than surface lifts, so that a consistent slope is maintained.
2.1.11 Pavement Structure

a) Geotechnical Report
 A geotechnical report shall be completed unless otherwise noted by the City’s Project Manager.

b) Maximum Benkelmen Beam Spring Rebound

<table>
<thead>
<tr>
<th>CLASS OF ROAD</th>
<th>MAXIMUM SPRING BENKELMEN BEAM REBOUND (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local (Less than 60 units)</td>
<td>2.50</td>
</tr>
<tr>
<td>Local (60 or more units)</td>
<td>1.90</td>
</tr>
<tr>
<td>Secondary Collector</td>
<td>1.50</td>
</tr>
<tr>
<td>Primary Collector (incl. Industrial)</td>
<td>1.25</td>
</tr>
<tr>
<td>Arterial</td>
<td>0.64</td>
</tr>
<tr>
<td>Freeway</td>
<td>0.50</td>
</tr>
</tbody>
</table>

c) Municipal Projects

The pavement structure of all roads being constructed or repaired under a Municipal Project, and in New Subdivisions, shall be based on the following table:

<table>
<thead>
<tr>
<th>Subgrade Type</th>
<th>Component</th>
<th>Local</th>
<th>Collector</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Weak"</td>
<td>Asphalt</td>
<td>90</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Gran. A</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Gran. B</td>
<td>300</td>
<td>450</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>531</td>
<td>712</td>
<td>912</td>
</tr>
<tr>
<td>"Medium"</td>
<td>Asphalt</td>
<td>90</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Gran. A</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Gran. B</td>
<td>300</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>531</td>
<td>712</td>
<td>812</td>
</tr>
<tr>
<td>"Strong"</td>
<td>Asphalt</td>
<td>90</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Gran. A</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Gran. B</td>
<td>150</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>330</td>
<td>511</td>
<td>711</td>
</tr>
</tbody>
</table>

If the geotechnical investigation determines the native material is stronger & free draining, a reduction in the Granular B thickness could be considered.

Equivalency Factors:

<table>
<thead>
<tr>
<th>Component</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>2.00</td>
</tr>
<tr>
<td>Recycled Asphalt</td>
<td>1.80</td>
</tr>
<tr>
<td>Granular A</td>
<td>1.00</td>
</tr>
<tr>
<td>Granular B</td>
<td>0.67</td>
</tr>
</tbody>
</table>

1. Source: TAC - Pavement Design and Management Guide, Table 6.5, 6.6, 6.7
- Top-coat asphalt laid on Freeways, Expressways, Arterials, and Primary Collectors shall be placed over existing or freshly laid hot mix asphalt, cold in-place recycled, or milled asphalt, and shall have a minimum lift thickness of 50mm.
- Granular A shall be placed at a minimum depth of 150mm
- A tack coat shall be applied on all milled surfaces and in situations where placement of asphalt lifts is separated by more than two weeks.

d) Surface Course Asphalt Policy

Transportation Planning & Design has set a criteria to establish a consistent application of asphalt selection on City Roads (based on traffic volume and expected life span).

HL1 is a premium surface asphalt mix with coarse aggregate that is more resistant to rutting and maintains good skid resistance. HL4 is a coarser mix with slightly higher stability suitable for rural uses. HL3 is a finer mix with improved aesthetic qualities for use in urban applications with pedestrians and other active transportation uses.

HL1
- > 20,000 AADT OR average daily truck traffic > 1,000

AND
- Pavement life expectancy at least 10 years

Use of PGAC 64-28 asphalt cement with a higher quality aggregate is required with all HL1 applications. The aggregate shall be on the MTO designate list.

HL4 – rural locations
HL3 – all other applications

Use of a higher grade of PGAC as required by the City of London.

2.1.12 Transition Between Road Types

Transition from two lanes to four or from four lanes to six should be made using the taper dimensions noted in the table in Section 2.1.14 in relation to design speed. The transition should be clearly signed with a Wa-23 and a Wa-40 as per the Ontario Traffic Manual – Book 6. Transition from hard surface to loose surface should be signed with a Wa-25 and a Wa-25T.

2.1.13 Access and Sight Distance

As determined from Figure E3-8 of the Geometric Design Standards for Ontario Highways, the following stopping sight distances shall be provided at intersections and accesses:

a) On new intersections and major accesses such as large commercial or industrial development, the desirable decision sight distance shall be provided.

b) On all other new accesses, the minimum decision sight distance shall be provided.
c) For existing accesses and single family residences, the minimum stopping sight distance shall be provided.

This figure assumes a line of sight from the driver of a vehicle entering the intersection (1.05m above the pavement surface) to the headlights of an approaching vehicle (at a height of 0.38m). Design speeds for the intersecting roadways are listed in Section 2.1.1 of this manual. Note also that section 4.24 of City of London By-law Z-1 may require a further setback from the right-of-way of structures over 1m in height.

2.1.14 Length of Turning Lanes

Requirement for a turning lane shall be determined by the Transportation Division during the site plan review process, subdivision review, design or redesign of an arterial roadway.

Length of the tapered and parallel portions of the turn lane shall be determined using the following table:

<table>
<thead>
<tr>
<th>Design Speed (km/h)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taper Length (m)</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Parallel Length¹ (m)</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

- For more information on design speed, refer to section 2.1.1. Note that distances should be increased for grades above 2% or unusual traffic conditions. Distances may be decreased if there are physical limitations on lane lengths.

- Storage requirements should be determined by a traffic study. The minimum storage on an arterial road intersection shall be 45m. On primary collectors and secondary collectors that intersect arterials, minimum storage shall be 45m. On all other types of intersections and accesses, minimum storage shall be 30m. In either case, storage distance starts 15m from the cenreline of the cross street or at the stop bar.

- Where constrained in an urban situation, parallel length may be reduced to 0m and taper length may be reduced to 45m.
2.1.15 Sidewalks, Bicycle Lanes and Pedestrian Walkways

a) Residential Subdivisions:
 i) Sidewalks are required on both sides of all collectors or arterial roads and where the road width is in excess of 8.0m measured edge of pavement to edge of pavement.
 ii) Sidewalks are required on both sides for the complete length of any road on which a school property fronts.
 iii) Sidewalks may be required on both sides of an entrance road to a subdivision from an arterial road as specified by the City Engineer.
 iv) Sidewalks are required on one side only of cul-de-sacs and streets containing or serving 40 or more units.
 v) Sidewalks are required on one side of abutting arterial and primary collector streets along the full frontage of the subdivision, or as otherwise specified by the City Engineer.
 vi) Sidewalks are to be located on the outside of a crescent street, unless approved otherwise by the City Engineer.
 vii) Sidewalk Gradient – All sidewalks should follow the road gradient in a residential subdivision. The minimum gradient of a sidewalk in a subdivision is 0.5% and the maximum gradient of a sidewalk is 8%.
 viii) All sidewalks constructed in residential subdivisions shall have a minimum crossfall of 2% and maximum crossfall of 4% consistent with the boulevard crossfall.

b) Industrial Subdivisions:
 Sidewalks are required on all streets within industrial subdivisions, and are required on abutting arterial and primary collector streets or as otherwise approved by the City Engineer.
 At commercial, multi-family and industrial driveways the thickness shall be 150mm reinforced, together with a granular base, unless otherwise approved by the City Engineer.

e) General:
 Sidewalks may be required on one side of any street if it forms part of the pedestrian system of a particular area.

d) Sidewalks that are separated from the curb and gutter by a boulevard shall be constructed at 1.5m in width and 100mm in depth using concrete. Sidewalk constructed as curb-face, shall be constructed at 1.8m in width and 100mm in depth. Depth of concrete should be increased to 150mm when sidewalk crosses a commercial access or egress. Depth of concrete shall be increased to 150mm at ramps on collector roads and higher road classifications where a risk exists of vehicles driving over them (refer to City of London SR 1.0, 1.1, 1.2, 1.3, 1.4 & 1.5, and UCC-1M).

To review the City of London SR’s please follow the link below:
For window street design information reference should be made to Section 1.1.3 b).
e) Reconstruction projects are to have the sidewalk replaced or repaired if an existing sidewalk is in place. In the absence of a sidewalk the designer is to verify with the Transportation Division – Warranted Sidewalk List to determine if a new sidewalk is to be installed.

f) 1.5m wide on-street bicycle lanes are to be incorporated into the road network in accordance with the City of London Bicycle Transportation Network Plan. The designer is to review and confirm requirements with the Transportation Division. Pavement structure for the on-street bicycle lanes are to be as per the required pavement structure for the class of road on which the bicycle lane is being constructed.

g) Pedestrian Walkways - are to be constructed as per City of London SR-7.0.

i. General & Widths – When designing a standard 3.0m or 4.6m width walkway, ensure that the full width of the walkway is sidewalk and no grassed area. As well, ensure that catch basins are located in a manner as not to disrupt walkway usage. An example is a catch basin at the end of a walkway, as per City of London Drawing Standards SR-7.0.

ii. Sidewalk – To have a crossfall of 20mm/m or alternative swales, as per City of London Drawing Standard 7.0.

iii. Removable Posts – Are to be installed at both ends of the walkway or as approved by the City Engineer, as per City of London Drawing Standard SR-8.0.

iv. Chain Link Fence – Chain link fences are to comply with the requirements of OPSS-541 and OPSD-900.01 except for the following amendments:
 - the height of the fence shall read 1.2m
 - the footing detail, part a: shall read in concrete.

v. Pedestrian Handrail – Where walkway grades exceed 8%, pedestrian handrails are to be constructed on one side of the walkway in line with the removable posts. Hot dipped galvanized handrails are to conform to OPSD-915.01.

vi. Stairs on Walkways – Where walkway grades exceed 10%, stairs with footings are to be constructed in accordance with City of London Drawing Standard SR-6.0.

vii. Rise and Run Dimensions for Stairs in Walkways – Are to comply with the following:
 Minimum rise – 125mm
 Maximum rise – 200mm
 Minimum run – 255mm
 Maximum run – 380mm

viii. Intermediate Landings – Where the total change in grade exceeds 1.8m, intermediate landings (no less than 1.5m) are to be provided.

ix. Sidewalk and Stair Concrete – To have at least a minimum strength of 30 MPa with 5% to 7% air entrainment and low slump.
x. **Stair Reinforcement** – To be #15M diameter bars with 40mm of cover in accordance with City of London Drawing Standard SR-6.0.

xi. **Driveway Locations** – To be located as far from the walkway as possible.

xii. **Details** – A plan & profile is required for all pertinent walkway designs together with all pertinent details.

xiii. **Sidewalk Alignment** – When there is a jog in the street line then a smooth transition (radius of 30.0m) should be shown between the two sidewalks.

xiv. **Barricade and/or Warning Sign** – A barricade and/or warning sign is required at the limit of a dead end street and/or end of a proposed sidewalk on an existing right-of-way where the sidewalk terminates (Refer to OPSD-912.532).

xv. **Sidewalk Termination** – A temporary sidewalk shall be constructed from the end of a proposed sidewalk to the adjacent road edge, at the curb & gutter and/or gravel shoulder as required by the City Engineer.

h) Trees to be planted in accordance with the “City of London Tree Planting Guidelines”.

i) **Sidewalk Ramps With Tactile Plates At Signalized and Non-Signalized Intersections**

All sidewalk ramps at signalized and non-signalized intersections shall have cast iron tactile plates installed on them to meet the needs of AODA as following:

Exterior paths of travel, curb ramps

In this section, “curb ramp” means a ramp that is cut through a curb or that is built up to a curb. O. Reg. 413/12, s.6.

Where a curb ramp is provided on an exterior path of travel, the curb ramp must align with the direction of travel and meet the following requirements:

1. The curb ramp must have a minimum clear width of 1,200 mm, exclusive of any flared sides.
2. The running slope of the curb ramp must,
 i. Be a maximum of 1:8, where elevation is less than 75 mm, and
 ii. Be a maximum of 1:10, where elevation is 75 mm or greater and 200 mm or less.
3. The maximum cross slope of the curb ramp must be no more than 1:50.
4. The maximum slope on the flared side of the curb ramp must be no more than 1:10.
5. Where the curb ramp is provided at a pedestrian crossing, it must have tactile walking surface indicators that,
 i. Have raised tactile profiles,
 ii. Have a high tonal contrast with the adjacent surface,
 iii. Are located at the bottom of the curb ramp,
 iv. Are set back between 150 mm and 200 mm from the curb edge, and
 v. Are a minimum of 610 mm in depth. O. Reg. 413/12, s. 6.
Exterior paths of travel, depressed curbs

In this section, “depressed curb” means a seamless gradual slope at transitions between sidewalks and walkways and highways, and is usually found at intersections. O. Reg. 413/12, s.6.

Where a depressed curb is provided on an exterior path of travel, the depressed curb must meet the following requirements:

1. The depressed curb must have a maximum slope of 1:20.
2. The depressed curb must be aligned with the direction of travel.
3. Where the depressed curb is provided at a pedestrian crossing, it must have tactile walking surface indicators that,
 i. Have raised tactile profiles,
 ii. Have high tonal contrast with the adjacent surface,
 iii. Are located at the bottom portion of the depressed curb that is flush with the roadway,
 iv. Are set back between 150 mm and 200 mm from the curb edge, and
 v. Are a minimum of 610 mm in depth. O. Reg. 413/12, s.6.

For sidewalk ramp with tactile plate details for signalized intersections, please refer to drawings STS 11.01 to STS 11.09. Refer to the same drawings for non-signalized intersections as well, with the exception of not having a pedestrian push button poles.

Approved manufacturers are as follows:

East Jordon Iron Works Inc.
Neenah Foundry Co.
Or; approved equivalent

2.1.16 Curb and Gutter

a. Types and Applications

i) Concrete Barrier Curb with Wide Gutter as per OPSD 600.01 shall be used on all arterial and primary collector roads, and within commercial and industrial subdivisions with a 21.5m road allowance.

ii) Concrete Barrier Curb with Wide Gutter as per OPSD 600.01 shall be used for all reconstruction projects unless otherwise noted by the City’s Contract Administrator. The designer is to verify curb and gutter type with the appropriate contract administrator.

iii) Concrete Semi-mountable with Standard Gutter as per OPSD 600.06 shall be used on all streets in new subdivisions with a road allowance up to and including 21.5m. With the exception of roundabouts, streets with parking plans, and other site specific conditions, Concrete Barrier Curb with Standard Gutter as per OPSD 600.04 be used as required by the City Engineer.

iv) Concrete Barrier Curb as per OPSD 600.11 shall be used on an island in a cul-de-sac and medians on roads.
b) **Transition/Termination**

 i) A transition of 3.0m is required between curb types. Curb transitions must occur on the road with the lower classification, minimum 1.0m away from the end of the radius.

 ii) Curb termination as per OPSD 608.01 shall be used within temporary turning circles and dead end streets or intersections which abut or are adjacent to a future phase of a subdivision.

c) **Catchbasins**

 i) Refer to Storm Sewer Section 5.16 in this manual for design information regarding catchbasins.

 ii) A concrete curb setback is required for all catchbasins and curb inlet catchbasins located on the right-of-ways. Refer to City of London SR-3.0.

 iii) Curb inlet catchbasins shall be used exclusively on roads classified as Arterials or higher, or in areas where there is an interest to drain the road surface more quickly.

 iv) Mini-catchbasins should be installed at low points in arterial roads and higher road classifications until placement of top asphalt. (see Section 5.16.15).

d) **Curb Radii Elevations** – Required at all Beginning of Curves (B.C.) and End of Curves (E.C) of curvatures of intersections, cul-de-sacs, islands and medians. **Note: a gutter elevation is required at the top end of all cul-de-sacs.**

 Curb Radii Grades – A minimum of 0.5%.

 Curb & Gutter Around Full Radius – Required at all intersections of subdivision streets and boundary road works adjacent to existing and future development. The curb & gutter is to be extended around the full radius at the corner and the sidewalk is to meet.

 Concrete Strength – Refer to OPSS 353.05.01

e) **New Access**

 Any new accesses to existing roads are required to attain a permit from the Environmental Programs and Customer Relations Division.

2.1.17 **Erosion Control Blanket**

 Straw mat and curled wood excelsior type erosion blankets shall conform to OPSS-804. For types not described in this standard, North American Green SC150 or approved equal shall be used. See also Sediment & Erosion Control, Section 10 in this manual.
2.1.18 Pavement Markings

Durable pavement marking locations shall be designed in accordance with the Ontario Traffic Manual – Book 11. Proposed designs shall be submitted to the Transportation Division for approval, two weeks prior to application. Application shall follow completion of top coat asphalt, within 24 hours.

Temporary pavement markings shall be applied as directed by the Transportation Division.

Traffic signage shall be designed in accordance with the applicable Ontario Traffic Manual and City of London Standards.

2.1.19 Pavement Reinforcement

Pavement reinforcement in the form of stepped milled joints shall be used for road widening, lane additions, and utility cuts greater than 1m in width and 3m in length.

Utilize the requirements noted in City of London SR-13.1: Stepped Milled Joint Pavement Reinforcement Detail. Joints should be out of the alignment where tires will normally track. The pavement and granular base for the reinforcement shall be identical to or greater than the existing road structure. Notwithstanding this, a minimum of 150mm of granular ‘A’ (to 98% Proctor) and 100mm of compacted hot mix asphalt (to 97% Marshall) shall be used. Where there is significant truck transport traffic, increase this minimum to 200mm of granular ‘A’.

2.1.20 Roadside Protection

Roadside protection shall be applied in accordance to the Ministry of Transportation’s Roadside Safety Manual.

2.1.21 Sediment & Erosion Control

The City of London requires an Erosion Sediment Control Plan (ESCP) be designed for most Capital Works, Operational and Development Projects. The complexity of the ESCP is determined by the sensitivity of the area that is to be protected.

For reconstruction or resurfacing of existing roads, or for infill sites less than 3.0 ha in land area within existing urbanized areas, that are not in close proximity to an open watercourse, woodlands, ESA’s, steep slopes or other natural area; an ESCP is not required, unless otherwise directed by the City Engineer. Where an ESCP is not required, all reasonable protective measures must be taken during construction to control sediment and prevent erosion from occurring.

For further information on the requirements of the ESCP, please refer to Section 10 – Sediment & Erosion Control, within this manual.

2.1.22 Bus Bays

Bus Bays shall be constructed at 200mm in depth of concrete. It shall have a cross fall of 2%. Standard Bus Bay shall have a minimum taper of 15.0m and minimum storage of 15.0m.
Storage dimensions are for one bus. Add 14.5m for each additional standard bus and 20.0m for each additional articulated vehicle. Actual dimensions should be consulted with London Transit Commission.

See Figure 2.1.22 Concrete Bus Bay for details.

2.1.23 Access Configurations

i. **Single Family** accesses are to be in accordance with Standard Contract Documents Drawings SR-2.0.

Should a conflict occur between the location of a driveway and the location of a curb inlet catchbasin (CICB), then the Owner shall correct the conflict by either relocating the driveway, except when a parking plan governs, or replacing the CICB with a twin inlet catchbasin in the same location as the original CICB, all to the specifications of the City Engineer and at no cost to the City.

ii. **Development blocks for site plan approvals** access configurations shall be in accordance with Ontario Provincial Standard Drawing 350.010 with dimensions as set out in the City’s Access Management Guidelines.

No catchbasins, existing or proposed shall be located within the limits of site entrances. In situations where existing catchbasins would be within proposed site entrances, the access shall be realigned so to avoid catchbasins or the catchbasin shall be relocated outside the access curb return.

2.2 INTERSECTIONS

2.2.1 At Grade Road/Rail Intersections

All railway crossings at grade in built-up areas shall be protected by the text warning sign “Cyclists Use Caution Crossing Tracks”.

2.2.2 Road/Road Approach Grades

Refer to TAC – Geometric Design Guide for Canadian Roads – Figure 2.3.2.2.

2.2.3 Road Layouts

When two (2) streets connect at an intersection they should connect at 90 degrees with 6 metre straight sections measured back from the street line.
2.3 TRAFFIC CALMING

2.3.1 Application and Methodology

Traffic calming measures are applied on primary and secondary collectors in residential areas, and occasionally on local roads. They enhance residents’ quality of life by encouraging low traffic speeds and volumes, minimizing conflicts between types of street users, and discouraging through traffic. Traffic calming makes the area safer and more inviting for pedestrians and cyclists, without restricting local motorists’ access to the arterial road network.

To be effective, traffic calming shall be applied only after careful study of the local transportation network and land use. It should be implemented on an area-wide basis, considering impacts on the surrounding road system. Non-motorized modes of travel should not be impeded by the applied measures. Consultation on the impact of the measures on emergency services, transit, snow plowing, street cleaning and garbage removal shall be completed as part of the planning process.

Traffic calming is only one design tool for safer roads. The most effective traffic calming measures have modest negative impacts on some aspects of the area in which they are installed. Because of this, other techniques such as education and enforcement, and design factors such as pavement width and street network design, should be considered in any traffic calming study.

Generally, traffic calming features should be spaced no more than 200m apart to achieve maximum efficiency.
The following 6 measures can be used to obstruct through traffic.
The following 6 measures can be used to reduce vehicle speeds and through traffic.

<table>
<thead>
<tr>
<th>TRAFFIC CALMING MEASURES TO REDUCE VEHICLE SPEEDS & THROUGH TRAFFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHICANE</td>
</tr>
<tr>
<td>Curb Extensions / Parking Bays</td>
</tr>
<tr>
<td>Curb Radius Reduction</td>
</tr>
<tr>
<td>Raised Median Island</td>
</tr>
<tr>
<td>Mid-Block Raised Median with Crosswalk</td>
</tr>
<tr>
<td>Traffic Circle</td>
</tr>
</tbody>
</table>

Note: Refer to Section 18 regarding additional design information for new subdivisions.
2.3.2 **Signage**

a) Entrance points to areas in which traffic calming measures have been installed, shall be posted with the Traffic Calmed Neighbourhood sign. See section 4.5.2 in the T.A.C. *Canadian Guide to Neighbourhood Traffic Calming*.

The Transportation Division may elect to use appropriate regulatory signs from the Ontario *Manual of Uniform Traffic Control Devices* as a traffic calming measure. Appropriate signage may include, but is not limited to, Maximum Speed, Right or Left Turn Prohibited, One Way, and Stop signs.

b) Street Name Signing
 Refer to Figure 2.3.1

2.3.3 **Curb Extensions and Reduced Radii**

Curb extensions are the delineation of the parking lane through the addition of a roll-over curb and gutter. The impact is that the through lanes are visually and spatially constricted at all times like they are when vehicles are parked along one side of a roadway. Tangent sections should be 5m at intersections, fire hydrants and public walkways. Tangent sections should be 15m at bus stops. Tapers in and out of curb extension streets should be made over a minimum of 30m. Reduced radii are used on the inbound radius into a local street. The impact of the reduced radii is to force vehicles to slow down considerably before making the turn. This calms the traffic speeds on the collector road as well as the local street. Refer to Fig. 2.3 – Curb Extensions and Reduced Radius.

2.3.4.1 **Speed Cushions**

Speed cushions are used to reduce vehicle speeds, by causing discomfort to occupants of vehicles crossing them at high speeds. Speed cushions shall be made of HL3 Asphalt Mix, unless directed otherwise by the City Engineer

Refer to Fig. 2.3.4 - Speed Cushions.

All sides of the cushions shall be ramped to allow drainage. All edges of the ramps should be formed and keyed into the existing asphalt to provide adequate drainage and a continuous road surface. The leading edge of the ramps shall be marked with durable solid white reflective triangles, with the point at the top of the ramp. A Speed Cushion sign (T.A.C. *Canadian Guide to Neighbourhood Traffic Calming* Wa-50) shall be installed beside the leading edge of the ramp.

2.3.4.2 **Raised Crosswalk Design**

Raised crosswalks are crosswalks constructed in concrete to a height of 150mm above the elevation of the street. Raised crosswalks are very effective at reducing vehicle speeds specifically where pedestrians will be crossing a street (see Figure 2.3.12)

Note: Catchbasins are to be provided at upstream end of raised crosswalks to allow for drainage.
2.3.5 Diverter

A diverter is a barrier placed diagonally across an intersection, to force turns and prevent travel in a straight line. It is used to reduce through traffic by prohibiting travel in some directions.

The diverter should be not less than 1.5m in width at its narrowest point. The barrier shall consist of semi-mountable curbs to allow emergency vehicles to negotiate the turn in an emergency, and either

- bollards spaced at 1.5m intervals along its centreline, or
- sufficiently dense landscaping to prevent crossing by vehicles.

2.3.6 Rights In/Rights Out Raised Concrete Median (“Pork Chop”)

a) A raised concrete median is used to prohibit straight-through and left turn movements both into and from the protected approach and shall be designed in accordance with the most current City of London Access Management Guidelines, section 2.1. To review the City of London Access Management Guidelines please follow the link below: http://www.london.ca/residents/Roads-Transportation/Transportation-Planning/Pages/Transportation-Study-Guidelines.aspx

b) A rights in/rights out island should only be used in locations where it is very difficult/or impossible to implement on street raised concrete median. A rights in/rights out island is roughly triangular, and placed in the centre of an intersection approach. A minimum size of 10m² is required to provide pedestrian refuge. Both the in and out lanes shall be not less than 6m in width. The island shall be protected by barrier curb OPSD 600.01, except at pedestrian crossings.

The signage shall be in compliance with Figure 4.16 in the *Canadian Guide to Neighbourhood Traffic Calming*, with equivalent signs for those required by the drawing.

2.3.7 Directional Closure

A directional closure is a concrete island or curb extension that physically obstructs one or more lanes of a roadway at an intersection. It may restrict entry or exit. The closure shall be protected by barrier curb OPSD 600.01, except at pedestrian crossings.

Signage shall be equivalent to the following:

- a) for an exit-only closure, Figure 4.11(a), Canadian Guide to Neighbourhood Traffic Calming, or
- b) for an entrance-only closure, Figure 4.11(b), Canadian Guide to Neighbourhood Traffic Calming

Equivalent signs shall be substituted for the signs required in the drawings.
2.3.8 **In/Rights Out ("Banana") Island**

An In/Rights Out Island is a curved island positioned to discourage left turns and through traffic movements from the protected approach. The island shall be not less than 5m in length and 1.5m in width. A minimum size of 10m² is required to provide pedestrian refuge. Both the in and out lanes shall be not less than 6m in width. The island shall be protected by barrier curb OPSD 600.01, except at pedestrian crossings.

Where possible, the island should terminate so that it does not intersect the crosswalk. Signage shall consist of:

a) a Hazard Marker sign Wa-33L mounted under a Keep Right sign Rb-25 at the leading edge of the island, and

b) a Right Turns Only sign Rb-42 on the right hand side of the protected lane, opposite the signs in (a).

2.3.9 **Roundabouts**

A roundabout is a raised island located in the centre of an intersection, which requires vehicles to travel through the intersection in a counter-clockwise direction around the island.

Refer to Figures 2.5, 2.5A, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14 and/or 2.15 as required for appropriate details.

All approaches to the circle shall be protected by a Yield sign, so that vehicles already traveling on the roundabout have right-of-way over vehicles entering it. A One Way sign Rb-21A, indicating a counter-clockwise direction of travel, shall be installed on the centre island opposite each approach.

For curb and gutter types within the roundabouts refer to Figure 2.7 Typical Roundabout Section.

For maintenance purposes, sanitary maintenance holes are not permitted to be located within the raised centre island of the roundabout. The sanitary maintenance hole is to be located within the apron of the island. Storm maintenance holes may be located within the centre island of the roundabout, provided the proposed landscaping does not hinder access to the maintenance hole.

2.3.10 **Raised Median Traffic Islands**

Raised median traffic islands may be installed in the centre of roads with at least 8m pavement width. A concrete island is used to reduce pavement width and thereby reduce the speed of passing traffic.

A minimum width of 3.5m shall exist between the curb faces on both sides of the island. The island shall be no less than 5m in length, with the maximum length dictated by local conditions. A longer island is desirable. The island shall be not less than 15m distance from all intersections. It should have barrier curb around its perimeter, except at pedestrian ramps and driveways. Wherever possible, the grade of the road should be restored so that water drains to the existing curb and gutter. In this case, gutter-less curb may be installed around
the perimeter of the island. Both ends of the island shall be marked with Keep Right Rb-25 sign, mounted over a Hazard Marker Wa-33L sign.

The median island can also have a pedestrian refuge feature. The requirement for such design should be determined in the planning stages by Transportation Planning and Design Division. For Pedestrian Refugee Island Design refer to figures.

- Pedestrian Refuge Island - Figure 2.3.10
- Pedestrian Refuge Island – Sections - Figures 2.3.10A&B

A minimum width of 4.0m shall exist between the curb faces on both sides of the island. The island shall be not less than 5m in length, with the maximum length dictated by local conditions. A longer island is desirable. The island shall be not less than 15m distant from all intersections. It should have barrier curb around its perimeter, except at pedestrian ramps and driveways if not restricted by Transportation Division. Wherever possible, the grade of the road should be restored so that water drains to the existing curb and gutter. In this case, gutter-less curb may be installed around the perimeter of the island. Both ends of the island shall be marked with Keep Right Rb-25 sign, mounted over a Hazard Marker Wa-33L sign.

2.3.10.1 Raised Intersections

Raised intersections are raised areas covering an entire intersection, with ramps on all approaches. Raised Intersections rise above the road level to provide a “lip” that is detectable by the visually impaired. By modifying the level of the intersection, the crosswalks are more readily perceived by motorists to be “pedestrian territory”.

Raised intersections are good for intersections with substantial pedestrian activity, and areas where other traffic calming measures would be ineffective.

For Raised Intersection Design refer to figures.

- Raised Concrete Intersection - Figure 2.3.2
- Raised Concrete Intersection Detail and Cross-Section – Figure 2.3.2a

2.3.11 Subdivision Collector Road Entrance

In general, collector road entrances into subdivisions from arterial roads should be as per Fig. 2.16 (No median). Where a new collector road is proposed opposite an existing collector road which includes a widened gateway treatment, the new road is to be widened and aligned to be compatible with the existing road and consistent with Fig. 2.16B, to the satisfaction of the City Engineer.

2.3.12 Temporary Measures

Temporary traffic calming measures shall be reviewed and approved by the Transportation Division prior to installation.
2.3.13 Box Forms

When islands (medians) are being constructed, Box Forms are to be placed where future road signs or hazard markers are to be installed, when the sign or marker will be located in concrete or asphalt. The Box Form should be located approximately 1.0m from the end of the island, and centred in the island at this location (typical). The Box Forms are available, free of charge from the City of London Transportation Operations Division (661-2500 ext. 4923).

2.4 TRAFFIC SIGNALS

2.4.1 Traffic Control Signal Warrants

Traffic signals shall be considered warranted if:

a) intersection conditions meet or exceed the warrant requirements of Section 4.3 of the Ontario Traffic Manual – Book 12;

b) approval is granted by the Roadway Lighting and Traffic Control Division; and

c) approval is granted by City Council as per City Policy 25(15).

2.4.2 Intersection Pedestrian Signal (I.P.S.) Warrants

Intersection pedestrian signals shall be considered warranted if:

a) conditions meet or exceed the warrant requirements of Section 4.8 of the Ontario Traffic Control Manual – Book 12;

b) approval is granted by the Roadway Lighting and Traffic Control Division, and

c) approval is granted by City Council as per City Policy 25(15).

2.4.3 Electrical Design

Electrical design for intersections shall be governed by the following three documents, in order:

a) The City of London’s Traffic Signal and Street Lighting Specifications (STS);

b) items not addressed in (a) shall conform to the Ministry of Transportation Traffic Signal Design manual, where addressed; and

c) items not addressed in (a) or (b) shall conform to the Ontario Provincial Standards & Specifications (O.P.S.S.).

To review the City of London STS document, please follow the link below:
2.4.4 Signal Plant Design

The design of Traffic Signals, Temporary Traffic Signals and the Relocation of Existing Traffic Signals must be completed, signed and sealed by a fully qualified Professional Electrical Engineer that meets the criteria identified in the Registry, Appraisal and Qualification System (RAQS) list. Designs must be submitted to the Roadway Lighting and Traffic Control Division for review and acceptance prior to any construction work being undertaken.

2.4.5 Pavement Markings

Permanent pavement markings shall be designed in accordance with the Ontario Traffic Manual – Book 11. Proposed designs shall be submitted to the Roadway Lighting and Traffic Control Division for approval, prior to application.

2.4.6 Materials

Materials used for traffic signals shall be in conformance with the requirements of the City of London Traffic Signals and Street Light Specifications.

2.5 STREET LIGHTING

2.5.1 Warrants

Street lighting shall be considered warranted on all roads in urban areas. At isolated rural intersections with non-continuous lighting on the intersecting roads, street lighting shall be considered warranted if the roadway meets or exceeds the requirements of the warrant provided in the Transportation Association of Canada Illumination of Isolated Rural Intersections guide.

Reconstruction of a substandard, isolated rural intersection should be considered before illumination. Street lighting may also be installed at isolated rural intersections at the direction of the Roadway Lighting & Traffic Control Division. Situations when this is warranted may include but are not limited to the occurrence of rare but severe collisions, an inability to maintain adequate hazard markings for raised channelizing islands, or the presence of an unusual number of long combination vehicles with reduced accelerating and braking abilities.

2.5.2 Materials

All street and walkway light fixtures shall be LED, full cut-off, 120V, integrated dimming control capability utilizing an external 0-10VDC control signal and must have a correlated colour temperature (CCT) of 4,000 +/- 500 K, except for walkway lights. The above applies to walkway lights except for the CCT which must be 3,000 +/- 500 K and the fixture should be a “shoebox” style. Materials used for street lights shall be in conformance with the City of London’s Traffic Signal and Street Light Specifications. Contact the Roadway Lighting and Traffic Control Division for an updated list of approved LED street light fixtures.
2.5.3 Street Light Designs

The design of street lights on Primary Collector/Main Street and higher classification roads must be designed, signed and sealed by a pre-qualified Professional Electrical Engineering Consulting Companies.

The design of street lights for Local Streets/Neighbourhood Streets & Secondary Collector/Neighbourhood Connectors roads must be designed, signed and sealed by a Professional Engineer.

The design of street illumination shall conform to the requirements set out by American National Standard Practice for Roadway Lighting (ANSI/IESNA RP-8-14)

1. Detailed photometric designs shall be submitted for all roads, intersections, sidewalks and walkways regardless of their classification demonstrating how the RP-8-14 standards have been satisfied. In addition to the photometric isolux drawings, the results of the photometric design must be displayed in a table similar to the following:

<table>
<thead>
<tr>
<th>Collector Road with Medium Pedestrian Conflict</th>
<th>L_{avg}</th>
<th>L_{avg}/L_{min}</th>
<th>L_{max}/L_{min}</th>
<th>L_{max}/L_{avg}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6</td>
<td>3.5</td>
<td>6.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Luminaire name (RESULTS)</th>
<th>RESULTS</th>
<th>RESULTS</th>
<th>RESULTS</th>
<th>RESULTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sidewalk with Medium Pedestrian Conflict</th>
<th>E_H (lux/fc)</th>
<th>E_{V_{min}}(lux/fc)</th>
<th>E_{avg}/E_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0/0.5</td>
<td>2.0/0.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

2. Street light fixtures shall be located such that current and future tree canopies do not interfere with the distribution of the light.

3. The use of street light fixtures mounted over the travelled portion of the road is encouraged to avoid trees and to achieve improved street light spacing.

4. The drawings shall show the location of the street lights (indicated by an open circle), street light conductors, the location of transformers and the location of power disconnects. The drawings shall specify the type of pole, fixture, conduit, fixture wattage, and conductor being used.

5. Street lights should be placed wholly on one lot at the property line whenever possible.

6. The maximum number of lights that can be attached to a single circuit is 10 unless voltage drop calculations are provided that demonstrate the circuit can accommodate the load.

7. Existing street lights shall be shown as solid black circles.
8. The street light cable should be indicated by a black line with an SL imposed on the line.

9. All street light wire road crossings shall be placed in a 50 mm RPVC duct with handholds at either end of the road crossing.

10. Designers should be aware of driveway locations and living room windows when determining the location of lights.

11. The design is to be drawn at a 1:500 scale.

12. Final designs must be accepted by the City of London's, Roadway Lighting & Traffic Control Division.

2.5.4 Walkway Lighting Design

Walkway lighting designs shall be comprised of the following:

1. 4.6m pole base mounted (black powder coated galvanized square tapered steel or aluminium).

2. Walkway lights are to intersect street circuits at a junction box located at one end of the walkway.

3. Street light wire shall be placed in a 50mm RPVC duct.

4. The light is to be placed within 1m of the fence line in the walkway.

5. Bollards located at either end of a lit walkway must be removable for maintenance purposes.

2.5.5 Residential Street Light Installation & Inspection Guidelines

1. The same light standard must be used from one end of a street to the other regardless of how many phases of construction are involved.

2. Poles and luminaries take a minimum of 8 weeks to be delivered. The City does not stock any residential street lights for new construction.

3. A power disconnect must be installed at the first street light from the transformer. All installations must be inspected by the Electrical Safety Association (ESA) prior to London Hydro doing the power connection. The Contractor is responsible for arranging inspection with ESA.
2.6 CONSTRUCTION SIGNAGE

2.6.1 General

Use the Ontario Traffic Manual - Book 7 - Temporary Conditions for all construction signage applications.

2.6.2 Traffic Management Plans

2.6.2.1 Definition

The Traffic Management Plan (TMP) is a construction scheduling tool that effectively harmonizes the construction project’s physical requirements with the operational requirements of the City of London, the transportation needs of the road users within the City and access concerns of the local residents.

2.6.2.2 Traffic Control Plan vs. Traffic Management Plan

The requirements of the Ministry of Labour and the Ontario Traffic Manual Book 7 construction works (the requirements for a Traffic Control Plan (TCP) and Traffic Protection Plan (TPP)) are different from the City of London’s Traffic Management Plan (TMP). The TMP is a plan that shows the construction methodology that will ensure through traffic movement, utility services, pedestrian traffic and vehicular access to the areas adjacent to the construction site, while allowing for the construction of the desired works. TCP’s and TPP’s list specific temporary signs and barricades to be installed.

For basic, straightforward utility projects, the City will receive a TCP/TPP, review it for General Conformance with City of London Traffic Management Plan Requirements, and OTM Book 7, and decide whether or not to accept the TCP/TPP to allow for the issuance of a PAW. However, the City of London will not complete an in-depth review or accept a Contractor’s Traffic Control Plan or Traffic Protection Plan. For ALL Development related projects and complex, multi stage/multi-phase capital works or utility projects; a TMP is required. Please refer to Section 2.6.2.4 TMP Submission Requirements, for further information.

2.6.2.3 When is a TMP Required?

A TMP is required whenever development/utility related works (closure, resurfacing or reconstruction) affect any portion of the City roadway as itemized below:

a) A TMP is required:
 i) For any work being done on the paved portion of an Arterial Road, Primary Collector Road, or Secondary Collector Road;
 ii) Where a full road closure of any class of road (local, secondary & primary collector and arterial) is proposed for longer than ½ a day duration;
 iii) For any partial road closure on an Arterial or Primary Collector Road where the road closure is for any length of time; or
 iv) Any work on downtown core streets (as defined by the Official Plan).
 v) For any work that may affect LTC services, emergency services or will have direct impact on pedestrians.

b) A TMP is not required for work on secondary collector roads or local streets, except as noted in 2.6.2.3.a) ii), above, or in 2.6.2.3 c) exceptions, below.

Note: Refer to Section 18 regarding additional design information for new subdivisions.
c) Exceptions:
Some exceptions due to depth of work, width of work, use of road (i.e. fronting a hospital, bus routes, school, etc.), may apply. In these site specific situations, discussion with the Transportation Division will be required to determine if a TMP is required.

TMP’s are required for both assumed and unassumed roads if there is an impact on traffic flow. For example, an undeveloped dead end unassumed street may have no public traffic and may not need a TMP.

2.6.2.4 Traffic Management Submission Requirements

The complexity of the TMP required is determined by the complexity of the proposed works.

2.6.2.4.1 For basic, straightforward UTILITY projects, the following information shall be provided:

a) a brief description of the work, including the anticipated duration of the work;

b) the location of the buildings/driveways and the municipal address, street names, including cross streets and intersections if any;

c) show all lanes for each road on the drawing and define the proposed lane widths;

d) state the impact on sidewalks, LTC bus stops/school bus stops, driveways (if any), and how they will be addressed.

e) submit 3 copies to the Transportation Planning & Design Division for review and acceptance, 14 days prior to applying for a PAW.

The Traffic Management Plan should be a reflection of a suitable layout from OTM Book 7; quote the Fig. No. for our reference, and refer to Table A for short duration work and Table B for long duration work. The signage and the distances between the signs should reflect the appropriate typical layout figure and tables.

2.6.2.4.2 For ALL Development related projects, and complex, multi stage/multi-phase Capital Works or Utility projects, more detailed information shall be provided, and these plans should form part of the construction detailed design drawing package and tender:

a) The TMP is required to demonstrate the design staging in a set of drawings, sealed by a Professional Engineer;

b) written verification that all works will be conducted within the Ministry of Labour, OPSS and the Ministry of Transportation standards;

c) Full plan coverage of the work area that is drawn to scale, and shows:

i) property lines

ii) utility plant locations

iii) proposed areas of removals (show all physical infrastructures to be removed, including bushes & trees)

iv) planned restoration
v) construction staging

d) Typical cross sections drawn to scale showing:
 i) widths of lanes (temporary pavement markings)
 ii) location of temporary traffic barriers & barricades (off set distances)
 iii) depth location and size
 iv) offset distances to 1:1 side slopes

e) The exact/specific location's road section or intersection affected

f) The type of closure required (e.g. sidewalk, bike path, one lane, two lanes, full closure, etc.), the duration of the closure

g) How the closure relates to the stages/phasing of the project (if applicable)

h) How the closure relates to stages of adjacent projects

i) How the closure protects the safe movement of pedestrians and traffic on the right of way, or accessing/egressing the right-of-way, including but not limited to:
 i) LTC bus stops
 ii) sidewalks
 iii) para transit stops
 iv) school bus stops
 v) illumination
 vi) edge drop-offs
 vii) emergency vehicle access

j) How the work accommodates: traffic signal operations, storm/sanitary sewer installations, and winter maintenance

k) How notification is planned to coordinate with the above agencies/departments of the public.

2.6.2.5 **Specific Requirements of the Plan during Road Resurfacing or Reconstruction**

a) On a two lane road section, one lane be open at all times and two-way traffic managed,

b) On a four lane road sections, two lanes (one in each direction) be open at all times,

c) Complete temporary pre-marking of the pavement marking plan, laid out on all new asphalt at the end of each construction day

d) Maintain all traffic signing (by the Contractor) throughout the duration of the project

e) Complete a pavement marking and traffic signing inventory (by the contractor) before and after the project and subsequent re-installation

f) Complete all required sidewalks, turn lanes, traffic islands, traffic signals, pavement marking, traffic signing and associated works/restoration prior to opening a facility to the public.

g) Detour Maintenance Plan that will ensure the quality of the temporary riding surface. Specifically, this shall detail
i) If Hot Mix Asphalt: the type of asphalt, thickness of asphalt, smoothness of surface layer, frequency of cleaning, and any provision for emergency pothole repair in the detour.

ii) If Gravel surface: The type of granular to be placed, the amount of compaction, the smoothness of the surface layer, frequency of maintenance and any provision for emergency grading (grader on site or standby), frequency of calcium to be added for dust suppression.

h) A site specific paving schedule that will detail the Contractor's paving schedule to ensure than on any of the roadway or portion thereof that is open to the public that all vertical deflections in the pavement are reduced to less than 10mm. This plan should include the contractor's plans to place temporary asphalt, milling out of temporary asphalt and final paving.

i) In unique circumstances, alternative solutions will be considered for approval by the Director of Transportation.

2.6.3 Detour Plans

Detour plans must be authorized through the Transportation Division, two weeks prior to construction. Signs will be placed by the Contractor’s own forces.

2.6.4 Traffic Control Plan

Traffic Control plans must be submitted to Transportation for acceptance.

2.6.5 Pedestrian Safety

Construction Projects in proximity to high pedestrian areas, including schools, commercial areas and any other source of high pedestrian volumes should take extra precaution to separate construction activity from pedestrian movements.

Sidewalks that are closed or removed should have signed alternate detour routes.

Any material deliveries or construction vehicle movements crossing pedestrian areas should be carefully monitored by a traffic control person.

Schools in close proximity to projects should be notified in the preconstruction letters and kept informed of progress.
TRANSPORTATION

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Minimum Centreline Radii of Curvature for Roads in Subdivisions</td>
</tr>
<tr>
<td>2.1.22</td>
<td>Concrete Bus Bay</td>
</tr>
<tr>
<td>2.2</td>
<td>90 degree Street Curve – Local Street</td>
</tr>
<tr>
<td>2.3</td>
<td>Curb Extension & Reduced Radius</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Street Name Signing</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Raised Concrete Intersection Design</td>
</tr>
<tr>
<td>2.3.2A</td>
<td>Raised Concrete Intersection Detail and Cross-Section</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Speed Cushion Design</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Pedestrian Refugee Island</td>
</tr>
<tr>
<td>2.3.10A, B</td>
<td>Pedestrian Refugee Island – Sections</td>
</tr>
<tr>
<td>2.3.12</td>
<td>Raised Pedestrian Crosswalk</td>
</tr>
<tr>
<td>2.5</td>
<td>Roundabout – 17.0 m Radius (Collector/Collector)</td>
</tr>
<tr>
<td>2.5A</td>
<td>Roundabout 17.0m Radius-Notes</td>
</tr>
<tr>
<td>2.6</td>
<td>Roundabout 15.6m Radius (Local/Local)</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical Section and Landscaping of Center Island</td>
</tr>
<tr>
<td>2.8</td>
<td>15.0m Splitter Island Design (Arterial/Collector)</td>
</tr>
<tr>
<td>2.9</td>
<td>5.5m Splitter Island Design (Arterial/Collector)</td>
</tr>
<tr>
<td>2.10</td>
<td>Roundabout Approach with Bike Lanes</td>
</tr>
<tr>
<td>2.12</td>
<td>Roundabout 17.0m Radius - Lighting & Signage (3-Leg Intersection)</td>
</tr>
<tr>
<td>2.13</td>
<td>Roundabout 17.0m Radius – Lighting & Signage (4-Leg Intersection)</td>
</tr>
<tr>
<td>2.14</td>
<td>Roundabout 15.6m Radius – Lighting & Signage (3-Leg Intersection)</td>
</tr>
<tr>
<td>2.15</td>
<td>Roundabout 15.6m Radius – Lighting & Signage (4-Leg Intersection)</td>
</tr>
</tbody>
</table>

Note: Refer to Section 18 regarding additional design information for new subdivisions.
TRANSPORTATION

LIST OF FIGURES

Figure 2.16 Gateway
Figure 2.16A Subdivision Collector Road Entrance
NOTES:

1. PRIMARY COLLECTORS
2. SECONDARY COLLECTORS
3. LOCALS
 a) 90° BENDS (DESIRABLE - 2 MAX./RES.)
 b) OTHER BENDS

C/L RADII

150 METRES
110 METRES
19 METRES

DEFLECTION ANGLE - Δ

CITY OF LONDON STANDARD DRAWING

MINIMUM C/L RADII OF CURVATURE OF ROADS IN SUBDIVISIONS

DWG FIG. 21 DATE 2012 01 26 APPROVED BY CITY ENGINEER

Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.
BETWEEN INTERSECTIONS

CORNER LOCATION

NOTES:
1. FOR STANDARD BUS USE 15.0m TAPER AND 15.0m LOADING AREA.
2. STORAGE BAY DIMENSIONS ARE FOR 1 BUS; ADD 14.5m FOR EACH ADDITIONAL STANDARD BUS, 20.0m FOR EACH ADDITIONAL ARTICULATED VEHICLE.
3. WHEN THE BUS BAY SURFACE IS CONCRETE ON AN ASPHALT ROAD, IT SHALL BE EXTENDED BY 3.0m.
4. ALL DIMENSIONS ARE IN METRES UNLESS OTHERWISE SHOWN.

CITY OF LONDON STANDARD DRAWING

CONCRETE BUS BAY

Note: Refer to Section 18 regarding additional design information for new subdivisions.
DIMENSION TABLE (M)

<table>
<thead>
<tr>
<th></th>
<th>20.0</th>
<th>19.0</th>
<th>18.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - ROAD ALLOWANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM C/L RADIUS</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>R - MINIMUM INSIDE STREET LINE RADIUS</td>
<td>9.0</td>
<td>9.5</td>
<td>10.0</td>
</tr>
<tr>
<td>W - MINIMUM ROAD WIDTH (EDGE OF PAVEMENT TO EDGE OF PAVEMENT)</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

NOTES:
1. SCALE: N.T.S.
2. ALL DIMENSIONS SHOWN ARE MINIMUM REQUIREMENTS.
3. ALL DIMENSIONS ARE IN METRES.
NOTE:
1 - USE 6.0m INBOUND RADIUS FROM COLLECTOR TO LOCAL STREET
2 - TANGENTS SECTIONS SHOULD BE 5m AT INTERSECTIONS, FIRE HYDRANTS, AND PUBLIC WALKWAYS
3 - TANGENT SECTIONS SHOULD BE 15m AT BUS STOPS
4 - TAPER TO AND FROM REGULAR CROSS SECTIONS SHOULD BE MADE OVER 30m
5 - ACCESS RAMPS TO BE PROVIDED AT ALL APPROACHES AND TO BE DESIGNED IN ACCORDANCE WITH THE MOST CURRENT CITY OF LONDON STANDARD
6 - CONCRETE SIDEWALK APPROACHES SHOULD BE SEPARATED WHERE POSSIBLE AND THE AREA IN BETWEEN GRASSED, OR CONCRETE CAPPED IF <0.5m² IN AREA

Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
150mm THICK 30Mpa CONCRETE PAD, 3±1.5% AIR ENTRAINMENT, AND 6x6x6mm WELDED WIRE MESH AND BROOM FINISH.
300mm GRANULAR 'A' COMPACTED TO 100% SPMD
350mm GRANULAR 'B' COMPACTED TO 100% SPMD

GUTTER DETAIL FOR CONCRETE PAD AT ELEVATED INTERSECTION ALONG RADI AND RAMPS

* FOR MAJOR ROAD DEFINITION SEE FIG 2.3.2

150mm THICK 30Mpa CONCRETE PAD, 3±1.5% AIR ENTRAINMENT, AND 6x6x6mm WELDED WIRE MESH AND BROOM FINISH. RAMPS CONNECTED TO MAIN PAD AND LANDING PAD TO BE DOWELLED WITH 1.0m LONG (65mm) EPOXY COATED RE-BAR, 600mm APART EVENLY SPACED ALONG JOINT STARTING 300mm IN FROM SIDES. CONCRETE PAD AND RAMPS TO BE PLACED OVER 300mm GRANULAR 'A' COMPACTED TO 100% SPMD AND 350mm GRANULAR 'B' COMPACTED TO 100% SPMD. RAMP TO BE RAISED 15cm OVER 3.0m TO PRODUCE A 4.2% SLOPE.

CROSS SECTION 'A' – 'A'

*(MAJOR ROAD)

CITY OF LONDON STANDARD DRAWING
RAISED CONCRETE INTERSECTION DETAIL AND CROSS-SECTION

FIG. 2.3.2A DATE 2014 06 06 APPROVED BY CITY ENGINEER.
The Corporation of the City of London

Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTES:

1. The asphalt and concrete pavement surfaces are to match.

2. The barrier curb is to match the top of the concrete slab with a 2% crossfall from centreline.

3. Tactile plates are required at all road entrances.

4. Catchbasins are required at the upstream end to collect minor drainage.

NOTE:

1. If retrofitting, consultant must check road drainage.

RAISED PEDESTRIAN CROSSWALK

CITY OF LONDON

Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTES:

1. NO DRIVEWAYS ARE TO HAVE THEIR ACCESS DIRECTLY TO THE ROUNDABOUT.

2. REFER TO FIGURES 2.12 AND 2.13 FOR STREET LIGHTING AND SIGNAGE INFORMATION.

3. FOR OTHER NOTES SEE FIG. 2.5A

4. FOR SPLITTER ISLAND DETAILS REFER TO FIGURE 2.9

5. TACTILE PLATES ARE REQUIRED AT ALL ROAD ENTRANCES.

6. FOR CURB AND GUTTER TYPES WITHIN THE ROUNDABOUT AND ISLAND VEGETATION ZONES REFER TO FIG. 2.7

CITY OF LONDON

ROUNDABOUT 17.0m RADIUS (COLLECTOR / COLLECTOR)
NOTES:

1. FOR STREETS THAT INTERSECT AT APPROXIMATELY 90° THE PROPERTY LINE MUST BE SETBACK 31.0m FROM THE INTERSECTION OF THE CENTRE LINE OF THE R.O.W. OR 8.5m FROM THE NOSE OF THE SPLITTER ISLAND FOR A 6.0m DRIVEWAY WIDTH.

 OR

 THE PROPERTY LINE MUST BE SETBACK 28.0m FROM THE INTERSECTION OF THE CENTRE LINE OF THE ROUNDABOUT OR 5.5m FROM THE NOSE OF THE SPLITTER ISLAND FOR A 3.0m DRIVEWAY WIDTH.

2. FOR ARTERIAL ROADS OR IF THE ROADWAYS DO NOT INTERSECT AT 90 DEGREES THE PROPERTY LINE MUST BE SET BACK 8.5m FROM THE NOSE OF THE SPLITTER ISLAND FOR A 6.0m DRIVEWAY WIDTH OR 5.5m FROM THE NOSE OF THE SPLITTER ISLAND FOR A 3.0m DRIVEWAY WIDTH.

3. ALL DIMENSIONS ARE TO EDGE OF PAVEMENT.

4. FOR COLLECTOR AND LOCAL ROADS THE SPLITTER ISLAND MUST BE A MINIMUM OF 5.5m IN LENGTH (FIG. 2.9). FOR ARTERIAL ROADS THE SPLITTER ISLAND MUST BE A MINIMUM OF 15.0m IN LENGTH (FIG. 2.8).

5. CROSSFALL SHALL BE AWAY FROM THE CENTER ISLAND.

6. FOR ISLAND VEGETATION ZONES AND TYPICAL CROSS-SECTION WITH CURB AND GUTTER TYPES REFER TO FIGURE 2.7 “TYPICAL SECTION AND LANDSCAPE OF CENTRE ISLAND”

7. FOR SIGNAGE DESIGN REFER TO ROUNDABOUT LIGHTING AND SIGNAGE DRAWINGS (FIG. 2.12 – FIG. 2.15).

8. SPLITTER ISLANDS SHALL BE CONSTRUCTED AT THE SAME TIME AS THE CENTER ISLAND IS CONSTRUCTED.

 WHEN SPLITTER ISLANDS ARE BEING CONSTRUCTED:
 BOX FORMS ARE TO BE PLACED WHERE FUTURE ROAD SIGNS OR HAZARD WARNING MARKERS ARE TO BE INSTALLED WHEN THE SIGN OR MARKER WILL BE LOCATED IN CONCRETE OR ASPHALT. THE BOX FORM SHOULD BE LOCATED APPROXIMATELY 1.0m FROM THE END OF THE ISLAND AND CENTERED IN THE ISLAND AT THIS LOCATION (TYPICAL).

 THE BOX FORMS ARE AVAILABLE FREE OF CHARGE FROM:
 THE CITY OF LONDON – TRANSPORTATION OPERATIONS DIVISION (661-2500 EXT. 4923).

CITY OF LONDON

ADDITIONAL ROUNDABOUT NOTES

<table>
<thead>
<tr>
<th>FIG 2.5A</th>
<th>DATE</th>
<th>APPROVED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2014 06 06</td>
<td>CITY ENGINEER</td>
</tr>
</tbody>
</table>

Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTES:
1. FOR CURB AND GUTTER TYPES WITHIN THE ROUNDBOUD AND ISLAND VEGETATION ZONES REFER TO FIGURE 2.7.
2. CROSSFALL SHALL BE AWAY FROM CENTRE ISLAND.
3. SIDEWALKS ARE REQUIRED ON ALL SIDES OF THE ROUNDBOUD.
4. REFER TO SECTION 2.1.15 FOR NUMBER AND LOCATION OF SIDEWALKS ON LOCAL STREETS.
5. NO DRIVEWAYS ARE TO HAVE THEIR ACCESS DIRECTLY TO THE ROUNDBOUD.
6. REFER TO FIGURES 2.14 AND 2.15 FOR STREET LIGHTING AND SIGNAGE INFORMATION.
7. TACTILE PLATES ARE REQUIRED AT ALL ROAD ENTRANCES.

CITY OF LONDON

ROUNDBOUD 15.6m RADIUS (LOCAL /LOCAL)

FIG 26 DATE 2009 05 19 APPROVED BY
REV'D 2014 05 15 CITY ENGINEER
Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTES:
1. FOR ROAD GEOMETRY INFORMATION REFER TO FIG. 2.5
2. FOR ISLAND DESIGN NOTES REFER TO FIG. 2.5A
3. REFER TO THE ONTARIO TRAFFIC MANUAL FOR SIGN TYPES
4. FOR A 3.0m DRIVEWAY WIDTH REFER TO FIG. 2.5A.

CITY OF LONDON

ROUNDABOUT 17.0m RADIUS – LIGHTING & SIGNAGE
(3-LEG INTERSECTION)

FIG. 2.12 DATE 2014 05 23 APPROVED BY

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
LEGEND:

- DURASTAR 20 SERIES CURVE #AE 5214, 150W HPS, TYPE III LUMINAIRE ON 7.6m AL. POLE c/w 2.4m ARM.
- CONTEMPO SERIES 245 CURVE #AE 4329, 100W HPS, POST TOP LUMINAIRE ON 4.6m AL. POLE.
- SIGN
- SNS STREET NAME SIGN

NOTES:
1. FOR ROAD GEOMETRY INFORMATION REFER TO FIGURE 2.6
2. REFER TO THE ONTARIO TRAFFIC MANUAL FOR SIGN TYPES
3. CROSSFALL SHALL BE AWAY FROM CENTRE ISLAND.

CITY OF LONDON

ROUNDABOUT 15.6m RADIUS – LIGHTING & SIGNAGE
(3-LEG INTERSECTION)

Fig 2.14 Date 2014 06 03 Approved By

Note: Refer to Section 18 regarding additional design information for new subdivisions.
Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTE:

1. Landscaping in the zone on the arterial and the collector side of the extension of the sight triangle is limited to 0.6m in height from edge of pavement.

2. The sight triangles shall be calculated using the criteria outlined in Section 2.3.3.2, sight triangle, of the geometric design guide for Canadian roads Part II and clearly indicated on the construction drawing.

3. All trees planted within the sight triangle shall be trimmed to at least 2.4 metres from the edge of pavement.

4. All other landscaping heights are unlimited.

5. Tree spacing is 10–12m.

6. Street lighting as per STS–10.10 and STS–10.11 unless otherwise approved by City engineer.

Note: Refer to Section 18 regarding additional design information for new subdivisions.
NOTE:

1. Landscaping in the zone on the arterial and the collector side of the extension of the sight triangle is limited to 0.6m in height from edge of pavement.

2. The sight triangles shall be calculated using the criteria outlined in Section 2.3.3.2, Sight Triangle, of the Geometric Design Guide for Canadian Roads Part II and clearly indicated on the construction drawing.

3. All trees planted within the sight triangle shall be trimmed to at least 2.4 metres from the edge of pavement.

4. All other landscaping heights are unlimited.

5. Tree spacing is 10-12m.

6. Street lighting as per STS-10.10 and STS-10.11 unless otherwise approved by City Engineer.

CITY OF LONDON
GATEWAY
WITH ISLAND

FIG 2.16B DATE 2016 10 25

APPROVED BY:

Design Specifications & Requirements Manual
The Corporation of the City of London
Updated: February 2017

Note: Refer to Section 18 regarding additional design information for new subdivisions.