To: Jacob Katz, President - Litera Group

From: Alan Xaykongsa and Amar Lad – TYLin

Date: June 21, 2023, revised February 28, 2024

Address: 140 Ann St., Suite 202

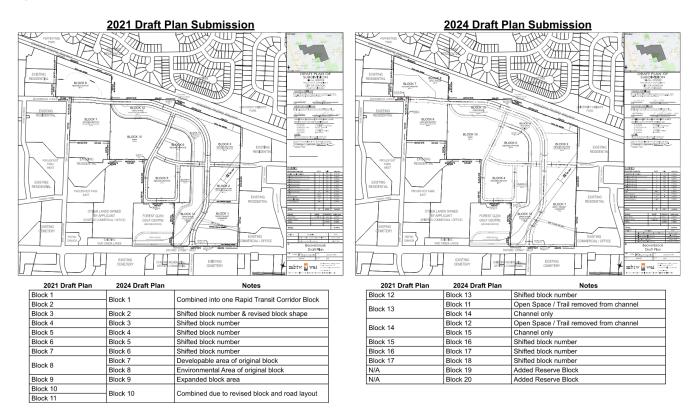
London, ON N6A 1R2

Re: The Beaverbrook Community, London, Ontario

323 Oxford Street West, 92 Proudfoot Lane, 825 Proudfoot Lane

Transportation Impact Study (TIS) Addendum Letter

MEMORANDUM


Introduction

TYLin (formerly, the Municipal Infrastructure Group Ltd. (TMIG), a T.Y. Lin International Company) was retained by Sam Katz Holdings Limited to prepare a Transportation Impact Study in support of a Draft Plan of Subdivision for a proposed residential subdivision to be located on 3 parcels of land; 323 Oxford Street West, 92 Proudfoot Lane, & 825 Proudfoot Lane, owned by Sam Katz Holdings Limited and situated north of Oxford Street West, generally opposite Beaverbrook Avenue in the City of London. The proposed development will contain a mix of residential densities, parklands, and open space blocks around the Mud Creek channel. The site is currently a predominantly greenfield area.

The 2023/2024 Beaverbrook Community resubmission comprises a coordinated set of revisions in response to comments received from the City of London and various agencies throughout 2022, as well as multiple working meetings and site walks with City staff and the UTRCA, and some design considerations led by the applicant.

As seen in **Figure 1**, the major changes to the Draft Plan include the road alignment of Street A and Street B, various road dimensions and geometries, revisions to the size and dimensions of the Neighbourhood Park (Block 10), and the separation of the original Block 8 into a developable and environmental block (Block 7 and Block 8, respectively). Revisions to the Draft Plan were also driven by three design considerations. The first design consideration includes combining original Block 1 and 2 into one rapid transit corridor development block. The second includes the separation of the multi-use pathway adjacent to the channel into a dedicated Open Space / Trail Block or within the Park Block. The third includes squaring off the original Block 3 (now Block 2) to add a northern portion to Park Block 9. In addition, the revised Draft Plan includes an increase in the unit count to represent higher density targets which are primarily focused on the rapid transit corridor development (Block 1) and blocks covered by the remnant High Density Overlay. The Draft Plan comparison can be found in further detail in **Attachment 1**.

Figure 1 2021 to 2024 Draft Plan Comparison

2021 to 2024 Draft Plan Comparison

The Beaverbrook Community • London, Ontario

February 2024

The Transportation Impact Study (TIS) Addendum Letter is part of the 2023/2024 Beaverbrook Community resubmission package and provides an addendum to the TIS submitted in July 2021 in response to updates made to the Draft Plan and site statistics. In the July 2021 TIS, the development proposed a total of 3,462 residential units (that included a 25% bonus density for a conservative assessment) – this addendum analyzes the effects of 355 additional dwelling units on the study area road network (totaling 3,817 units). Traffic analysis was done under the future total 2035 conditions which correlates to the full build-out of the residential development. All traffic assumptions made in the July 2021 TIS remain valid. Based on the analysis enclosed in this letter, the trips generated by **the additional 355 units can be accommodated** with negligible impact across the study area traffic network.

Development Context

The latest Draft Plan, found in **Attachment 2**, includes 7 medium and high-density residential blocks (including a rapid transit corridor block and 6 neighbourhood blocks) consisting of 3,817 units, 6.09 hectares of parklands, and 7.80 hectares of open space blocks. **Figure 2** shows the updated proposed Draft Plan showing the proposed residential blocks, neighbouring lands, and future site access.

Figure 2 Updated Draft Plan

Based on the proposed subdivision plan, vehicular access to the area will be provided by the proposed northward extension of Beaverbrook Avenue from Oxford Street West to Proudfoot Lane, a westerly extension of Westfield Drive to Beaverbrook Avenue. The proposed "Street A", "Street B", private condominium streets will act as public and private local roads through the site, connecting residential blocks to the collector road. A pedestrian walkway (to be evaluated further) is proposed to connect residents from Beaverbrook Avenue to Walmer Gardens, north of the Canadian Pacific Railway Line.

Based on pre-consultation with the City of London, a 1.0% annual growth rate was agreed to and applied to Oxford Street West, Beaverbrook Avenue, Proudfoot Lane, and Wonderland Road North to 2030, and 0.5% from 2030-2035. In addition, a 0.5% annual growth rate was agreed upon and applied to Cherryhill Boulevard and Platt's Lane to 2035.

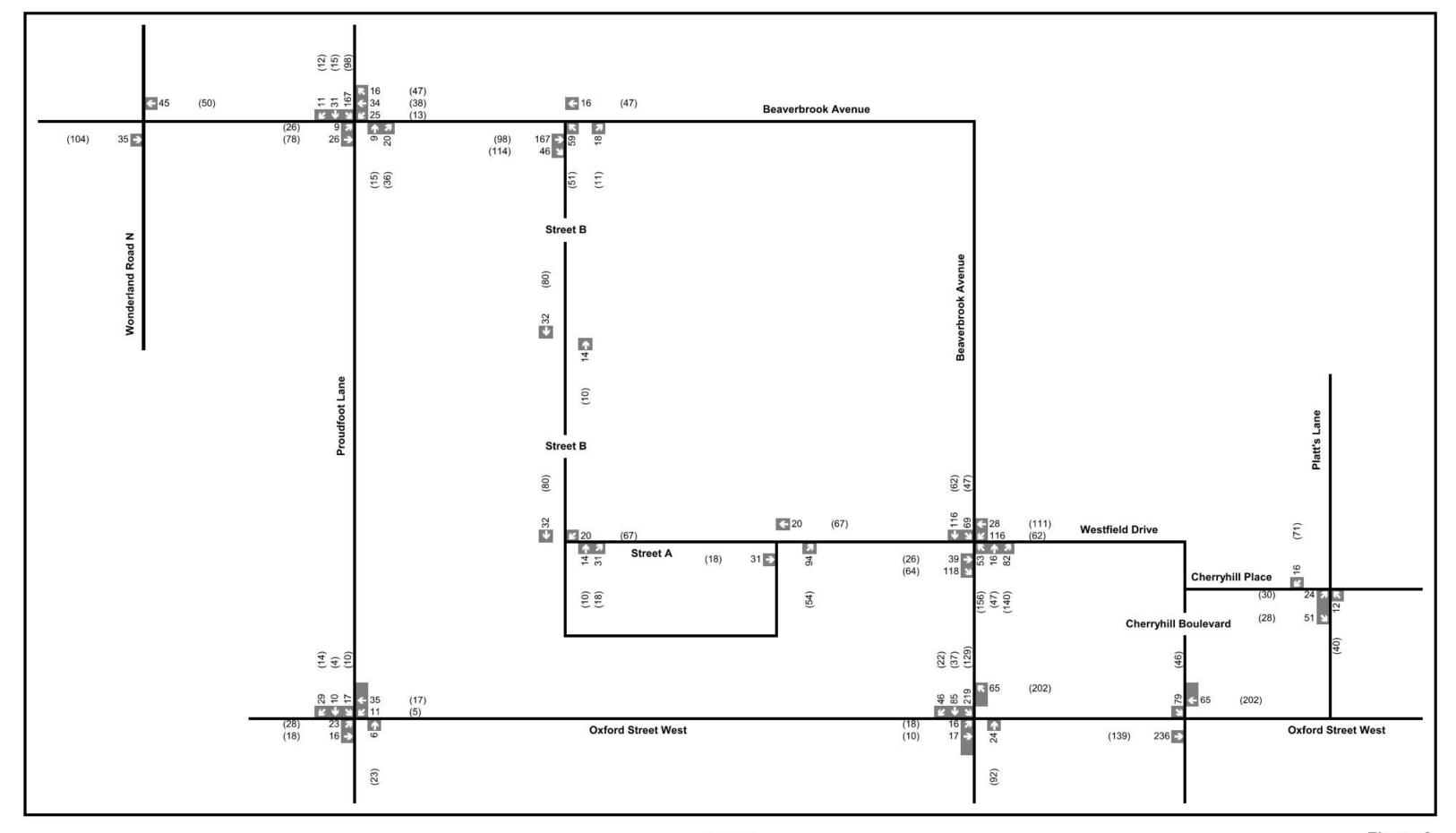
Site Generated Traffic

The updated Draft Plan of subdivision is comprised of 3,817 units across seven blocks for the full build-out condition. This results in a net increase of 355 units from the July 2021 TIS. Site traffic generated by the proposed residential subdivision was estimated by applying the trip rates found under Land Use Code (LUC) 221 & LUC 222 in the ITE Trip Generation Manual, 10th Edition, for weekday a.m. and p.m. peak hours, for mid-rise and high-rise blocks, respectively. This is consistent with the methodology utilized in the July 2021 TIS. It is noted that only the full build-out 2035 horizon was analyzed and therefore, the trip generation was not divided into separate phases. The overall non-automobile modal split of 35% was used for the 2035 planning horizon to stay consistent with the July 2021 TIS.

Table 1 summarizes the estimated total trip generation of the subject site.

Table 1 Passenger Car Peak Hour Trips

n n	Ŋ				Peak	Hour Tri	p Genera	tion	
Horizon	Multifamily Fitted Curve Housing (Mid-rise) Equation LUC 221 Trip Distribution	Weekday AM Weekday PM							
Ĭ	-			In	Out	Total	ln	Out	Total
		,		Ln(T) =	0.98 Ln(X) – 0.98	Ln(T) =	0.96 Ln(X	() – 0.63
		LUC 221	Trip Distribution	26%	74%	100%	61%	39%	100%
(35)		1,090	Fitted Curve Equation Trip Distribution Net Trips Fitted Curve Equation Trip Distribution Net Trips Total Site Trips	65	188	253	190	121	311
Full Build-Out (2035)		Housing (High-		T = 0).28 X + 1	2.86	T =	0.34 X +	8.56
Buil	2,	_	Trip Distribution	24%	76%	100%	61%	39%	100%
Full	1	2,727 units	Net Trips	132	417	549	388	249	637
	1-7	3,817 units	Total Site Trips	197	605	802	578	370	948
	7	rips from July 2021	TIS (3,462 units)	176	542	718	514	329	843
In	crease	in Trips from July 2	021 TIS (+355 units)	+21	+63	+84	+64	+41	+105

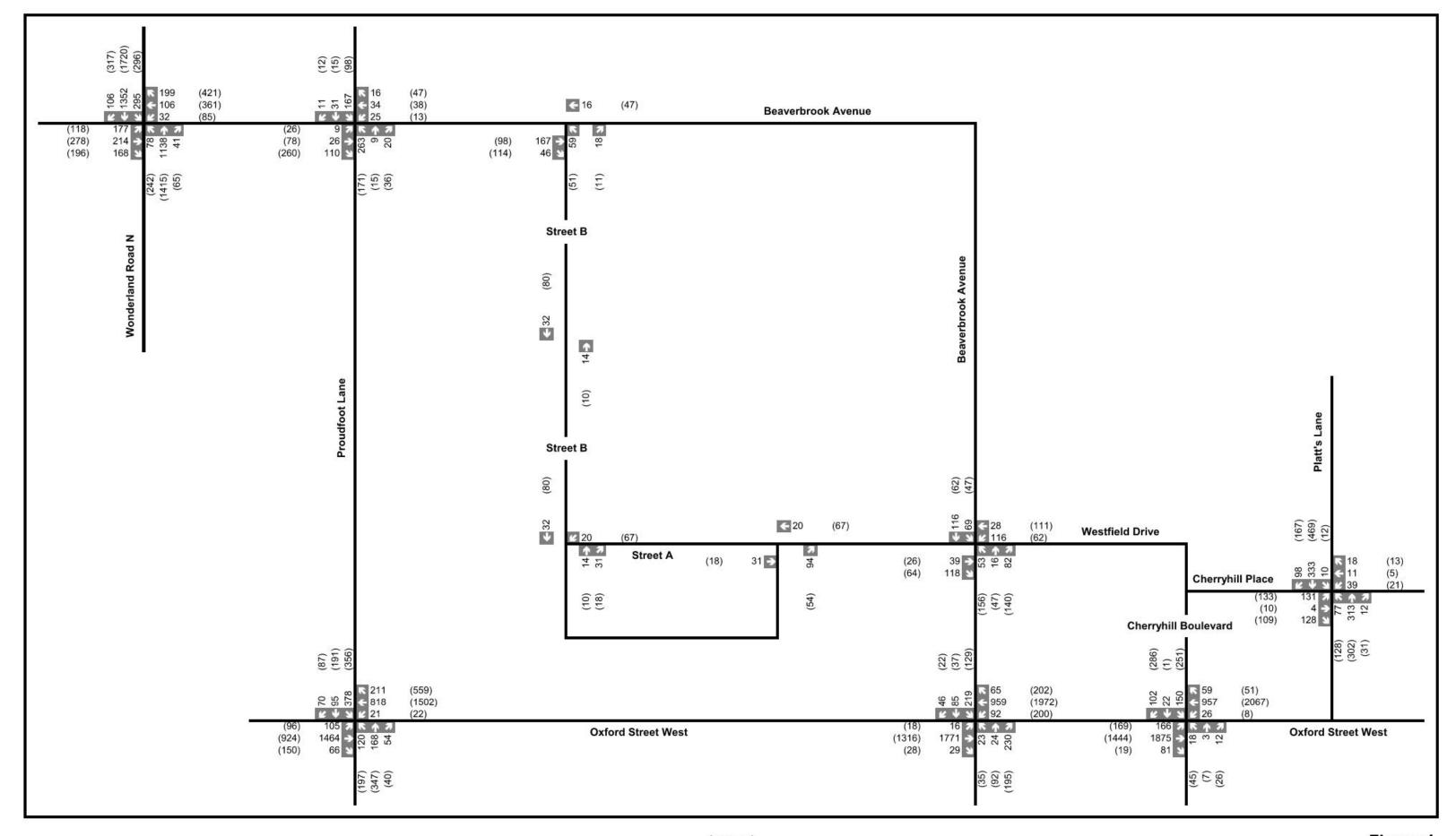

As outlined in **Table 1** during the 2035 planning horizon, the full build-out of the Draft Plan is expected to generate a total of 802 two-way vehicle trips during the a.m. peak hour, consisting of 197 inbound trips and 605 outbound trips. During the p.m. peak hour, it is expected to generate 948 two-way vehicle trips consisting of 578 inbound trips and 370 outbound trips. There is a total a.m. and p.m. increase in trips of 84 and 105 trips, respectively from the July 2021 TIS.

The site distribution and assignment were kept consistent with the July 2021 TIS. The distribution of site traffic was derived based on reasonable assumptions for the site's location in the City of London and refined in accordance with patterns observed in existing traffic data and the trip distribution methodology followed in background developments. The site traffic was assigned to the road network, accordingly, broken down by trips generated from each of the eight residential blocks within the subject site. **Table 2** summarizes the proportion of site trips distributed to the study area by direction of approach and departure for both the a.m. and p.m. peak hours.

Table 2 Site Trip Generation

Tain Orientation (To / Form)	Distribut	ion (%) AM	Distribution (%) PM				
Trip Orientation (To / From)	Inbound	Outbound	Inbound	Outbound			
North	20%	10%	30%	20%			
East	30%	50%	30%	50%			
South	30%	35%	40%	25%			
West	20%	5%	0%	5%			
Total	100%	100%	100%	100%			

Figure 3 illustrates the updated estimated passenger vehicle site trips generated by the proposed development that were assigned to the study road network for the ultimate 2035 horizon.


Legend

xx A.M. Peak Hour Traffic (xx) P.M. Peak Hour Traffic

Total Traffic Volumes

The future total traffic volumes were derived by combining the projected future background traffic volumes with the projected site trip assignment.

Figure 4 illustrates the future total traffic volumes for the 2035 planning horizon during the weekday a.m. and weekday p.m. peak hours.

Future Total 2035 Traffic Capacity Analysis

The capacity analysis identifies how well the intersections and access driveways are operating and how they are expected to operate in the future. The analysis contained in this report utilized the Highway Capacity Manual (HCM) 2000 techniques within the Synchro Software package. The reported intersection volume-to-capacity ratios (v/c) are a measure of the saturation volume for each turning movement, while the levels-of-service (LOS) are a measure of the average delay for each turning movement.

The analysis includes identification of all intersections and for all movements; v/c ratios, and LOS indicators. 'Critical' intersections and movements include:

- Overall intersection operations, through movements or shared through/turning movements with a LOS F or v/c ratio increased to 0.90 or above; and
- V/C ratios for exclusive movements that will exceed 1.00 or LOS F

As per the July 2021 TIS, it is noted that the cycle length for the intersection of Wonderland Road North and Beaverbrook Avenue was increased to 145 seconds in the p.m. peak hour. All other intersection improvements are maintained from Future Background 2035 such as: a protected phase was added for the eastbound left movement and the signal timings were optimized for both peak hours. Additionally, a protected phase was added for the eastbound left and northbound left movements at the intersection of Oxford Street West and Proudfoot Lane under the future background 2035 conditions and was maintained under the future total 2035 conditions, and signal timings were optimized for both peak hours.

Furthermore, the signalization of the intersection of Oxford Street West and Beaverbrook Avenue was maintained from the Future Background 2026 scenario. This is also consistent with the July 2021 TIS.

Table 3 summarizes the Synchro/HCM capacity results for the study intersections during the weekday a.m. and weekday p.m. peak hours under future total 2035 traffic conditions. Detailed Synchro reports can be found in **Attachment 3**.

Table 3 Future Total 2035 Capacity Analysis

	Movement	Week	day AM Peal	k Hour	Week	Weekday PM Peak Hour				
Scenario	of Interest	v/c	Delay (s)	LOS	v/c	Delay (s)	LOS			
	Overall	0.87	33	С	1.03	59	E			
	EBL	0.82	69	E	0.99	131	F			
	EBT	0.58	47	D	0.56	46	D			
	EBT	0.24	42	D	0.13	39	D			
	WBL	0.21	49	D	0.44	51	D			
w	WBT	0.42	51	D	0.91	80	F			
Wonderland Road at Beaverbrook Avenue	WBR	0.15	48	D	0.76	64	E			
Beaverbrook Avenue	NBL	0.48	20	В	1.01	110	F			
	NBT	0.78	34	С	0.89	45	D			
	NBR	0.03	19	В	0.05	23	С			
	SBL	0.83	48	D	0.96	90	F			
	SBT	0.71	21	С	1.00	60	E			
	SBR	0.10	12	В	0.38	25	С			
	EBLTR	0.23	10	Α	0.47	12	В			
Proudfoot Lane at	WBLTR	0.13	9	Α	0.14	9	А			
Beaverbrook Avenue	NBLTR	0.45	12	В	0.33	11	В			
	SBLTR	0.33	11	В	0.19	10	А			
	Overall	1.03	40	D	1.02	43	D			
	EBL	0.39	16	В	0.84	70	Е			
	EBTR	0.89	31	С	0.66	26	С			
	WBL	0.47	54	D	0.15	24	С			
Proudfoot Lane at	WBT	0.55	28	С	0.98	46	D			
Oxford Street West	WBR	0.18	2	Α	0.57	4	Α			
	NBL	0.49	45	D	0.56	39	D			
	NBT	0.71	62	E	0.97	91	F			
	NBR	0.04	48	D	0.03	43	D			
	SBL	1.10	116	F	1.02	93	F			

	Movement	Week	day AM Peal	k Hour	Week	day PM Peal	Hour
Scenario	of Interest	v/c	Delay (s)	LOS	v/c	Delay (s)	LOS
	Overall	0.98	27	С	0.90	21	С
	EBL	0.06	10	Α	0.32	19	В
	EBTR	0.96	21	С	0.69	14	В
Beaverbrook Avenue	WBL	0.97	155	F	0.72	31	С
at Oxford Street	WBTR	0.50	7	А	0.89	16	В
West	NBLT	0.22	48	D	0.66	63	E
	NBR	0.71	62	E	0.13	51	D
	SBL	0.84	67	E	0.66	57	E
	SBT	0.21	41	D	0.10	44	D
	SBR	0.03	39	D	0.01	43	D
	Overall	0.83	14	В	0.97	39	D
	EBL	0.51	8	А	0.90	104	F
	EBTR	0.84	8	А	0.60	4	А
Oxford Street West	WBL	0.44	32	С	0.04	10	В
at Cherryhill	WBTR	0.52	13	В	1.02	49	D
Boulevard	NBL	0.45	70	E	0.66	83	F
	NBTR	0.11	63	E	0.15	62	E
	SBL	0.58	60	E	0.69	66	E
	SBT	0.56	59	E	0.69	66	E
	SBR	0.08	46	D	0.85	72	E
	EBLTR	1.07	115	F	1.41	263	F
	WBLTR	0.42	40	E	0.28	41	E
Platt's Lane at Cherryhill Place	NBL	0.08	9	А	0.15	10	Α
(unsignalized)	NBTR	0.21	0	А	0.20	0	Α
(aa.g.nanzea)	SBL	0.01	8	А	0.01	9	Α
	SBTR	0.28	0	А	0.37	0	Α

G i-	Movement	Week	day AM Peal	k Hour	Weekday PM Peak Hour					
Scenario	of Interest	v/c	Delay (s)	LOS	v/c	Delay (s)	LOS			
Beaverbrook Avenue	EBLTR	0.24	12	В	0.14	12	В			
at Street A/Westfield	WBLTR	0.48	26	D	0.51	26	D			
Drive	WBLTR	0.04	3	Α	0.10	4	Α			
(unsignalized)	SBLTR	0.05	3	А	0.03	4	А			
Street B at	EBTR	0.14	0	Α	0.12	0	А			
Beaverbrook Avenue	WBLT	0.00	0	Α	0.00	0	Α			
(unsignalized)	NBLR	0.11	10	В	0.08	10	А			
	WBLR	0.02	9	Α	0.07	9	А			
Street B at Street A (unsignalized)	NBLR	0.03	0	Α	0.02	0	Α			
(unsignalized)	SBLT	0.00	0	Α	0.00	0	Α			

As seen in **Table 3**, the results of the Synchro analysis with the updated site statistics are consistent with that in the July 2021 TIS. Under 2035 future total conditions, most intersections are operating within capacity, with acceptable Levels of Service and reasonable delays for most movements.

The signalized intersection of Wonderland Road North and Beaverbrook Avenue is operating with an overall v/c of 1.03 and LOS 'E' in the p.m. peak hour, due to several movements approaching capacity and operating with LOS of 'E' or 'F'. Notably, the northbound left is operating with a v/c of 1.01 and LOS 'F', the southbound left at a v/c of 0.96 and LOS 'F', and the southbound through at a v/c of 1.00 and LOS 'E'. These movements continue to be limited due to the compounded corridor growth over 15 years and are not impacted by the introduction of site traffic, **as demonstrated in future background conditions** shown in the July 2021 TIS.

The unsignalized four-way intersection of Beaverbrook Avenue and Proudfoot Lane is operating with LOS 'B' or better, minimal delays, and considerable reserve capacity for all movements. Traffic signal and stop-control warrants were conducted, as detailed in **Section 8** of the July 2021 TIS, and an all-way stop control was warranted for this intersection.

The signalized intersection of Proudfoot Lane at Oxford Street West is operating at an overall LOS 'D' during weekday a.m. and p.m. peak hours, due to v/c of 1.03 and 1.02, respectively. In the a.m. peak hour, this is due to the southbound left operating with a v/c of 1.10 and LOS 'F' due to delays of 116 seconds. In the p.m. peak hour, the northbound through and southbound left are operating with v/c of 0.97 and 1.02, respectively, with LOS 'F' and delays of 91 and 93 seconds. These movements continue to be limited due to the compounded corridor growth over 15 years and are not impacted by the introduction of site

traffic, as demonstrated in **future background conditions** (as seen in the July 2021 TIS). All other movements are operating with sufficient reserve capacity and minimal delays.

The signalized intersection of Beaverbrook Avenue and Oxford Street West is operating at an overall LOS 'C' during weekday a.m. and p.m. peak hours. In the a.m. peak hour, the overall v/c of 0.98 is triggered by the westbound left movement's v/c of 0.97 and LOS 'F' due to delays of 155 seconds. Signal coordination along Oxford Street West, leading to better platooning of vehicles travelling eastbound and westbound, may help manage delays along the corridor and improve the flow of left turning vehicles. Other movements such as the northbound through/left, northbound right and southbound left are operating with LOS 'E' similarly due to challenges crossing with large east-west through **volumes resulting from 15 years of background corridor growth.**

The signalized intersection of Oxford Street West and Cherryhill Boulevard is generally operating with some delay, acceptable LOS, and sufficient reserve capacity during both peak hours. In the p.m. peak hour, the overall v/c of 0.97 and LOS 'D' is triggered by the eastbound left operating with a v/c of 0.90 and LOS 'F' due to turning delays of 104 seconds, and a westbound through/right operating with a v/c of 1.02 and delays of 49 seconds. Northbound and southbound movements are operating with LOS 'E' and 'F' in both peak hours due to existing cycle length limitations and splits geared towards east-west movements to **accommodate background corridor growth.**

The unsignalized intersection of Platt's Lane and Cherryhill Place is generally operating with minimal delay, acceptable LOS, and sufficient reserve capacity during both peak hours. However, the eastbound left/through/right movement is operating with v/c of 1.07 and 1.41 (compared to 1.04 and 1.34 in the July 2021 TIS), with delays of 115 and 263 seconds in the a.m. and p.m. peak hours, respectively, resulting in an LOS 'F', **primarily caused by background corridor growth**. It is understood that growth along this street would be caused by the proposed development, rather than added on top of the same, during the study horizon. The application of compounded growth of 0.5% on Cherryhill Place across the 15-year period of this study, despite the closed geography of the street should be reconsidered by the City.

All unsignalized internal stop-controlled intersections are operating with LOS 'A' or LOS 'B' for all movements, minimal delay, and considerable reserve capacity.

In comparison with the results from the July 2021 TIS, the Synchro analysis shows that the addition of 355 units does not significantly impact the v/c ratios, delays, and LOS across the study area intersections. Overall, all intersections operate within capacity and with minimal delays for most movements under 2035 future total conditions.

Conclusions and Recommendations

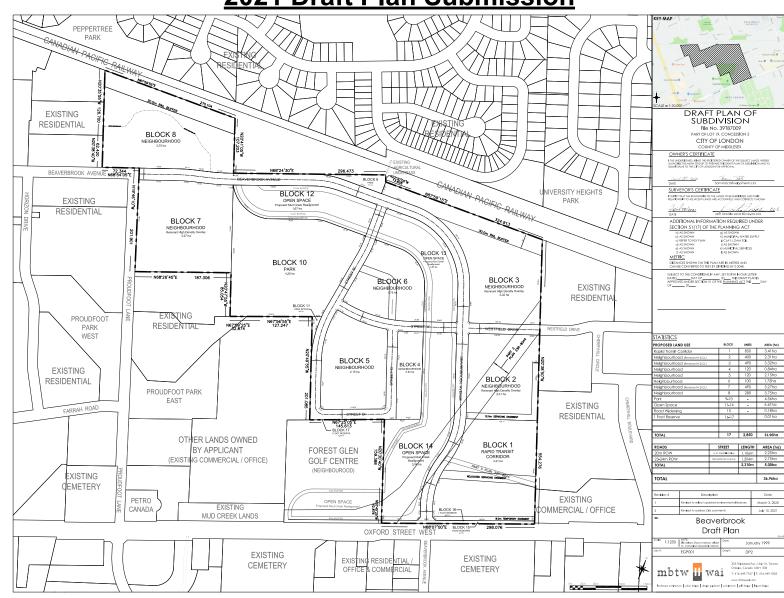
Following the traffic analysis completed in this addendum, TYLin provides the following summary and recommendations based on the updated site statistics for the proposed development:

- ▶ As per the latest site plan, there are a total of 3,817 units across seven blocks proposed for the full build-out of the development by the ultimate 2035 horizon year. This is an increase 355 dwelling units from the July 2021 TIS.
- ▶ With the updated site statistics, the development is estimated to generate a total 802 two-way vehicle trips during the a.m. peak hour, consisting of 197 inbound trips and 605 outbound trips. During the p.m. peak hour, it is expected to generate 948 two-way vehicle trips consisting of 578 inbound trips and 370 outbound trips.
- Under future 2035 traffic conditions, the study area intersections are expected to predominantly operate with good operational characteristics and sufficient reserve capacity during both weekday a.m. and p.m. peak hours with no significant issues brought about by the proposed development to report. Any poor LOS or delay for select turning movements under future conditions is a result of poor operations under existing conditions or extensive background corridor growth and not due to the addition of site generated traffic, as detailed within the July 2021 TIS. All internal intersections within the subdivision are also anticipated to operate with good functionality and acceptable levels of service (LOS) and v/c ratios.
- ▶ It is noted that in comparison with the future total results from the July 2021 TIS, the addition of new units in the proposed development does not significantly change the capacity of the study intersections.
- Accordingly, it is TYLin's opinion that traffic from the proposed development can be accommodated by the boundary road network and can accommodate the proposed development traffic demands.
- ▶ All conclusions made in the July 2021 TIS still remain valid.

Attachments

Attachment 1 – 2021 and 2024 Draft Plan Comparison

Attachment 2 – Draft Plan (2024-02-13)


Attachment 3 – Future Total 2035 Synchro Reports

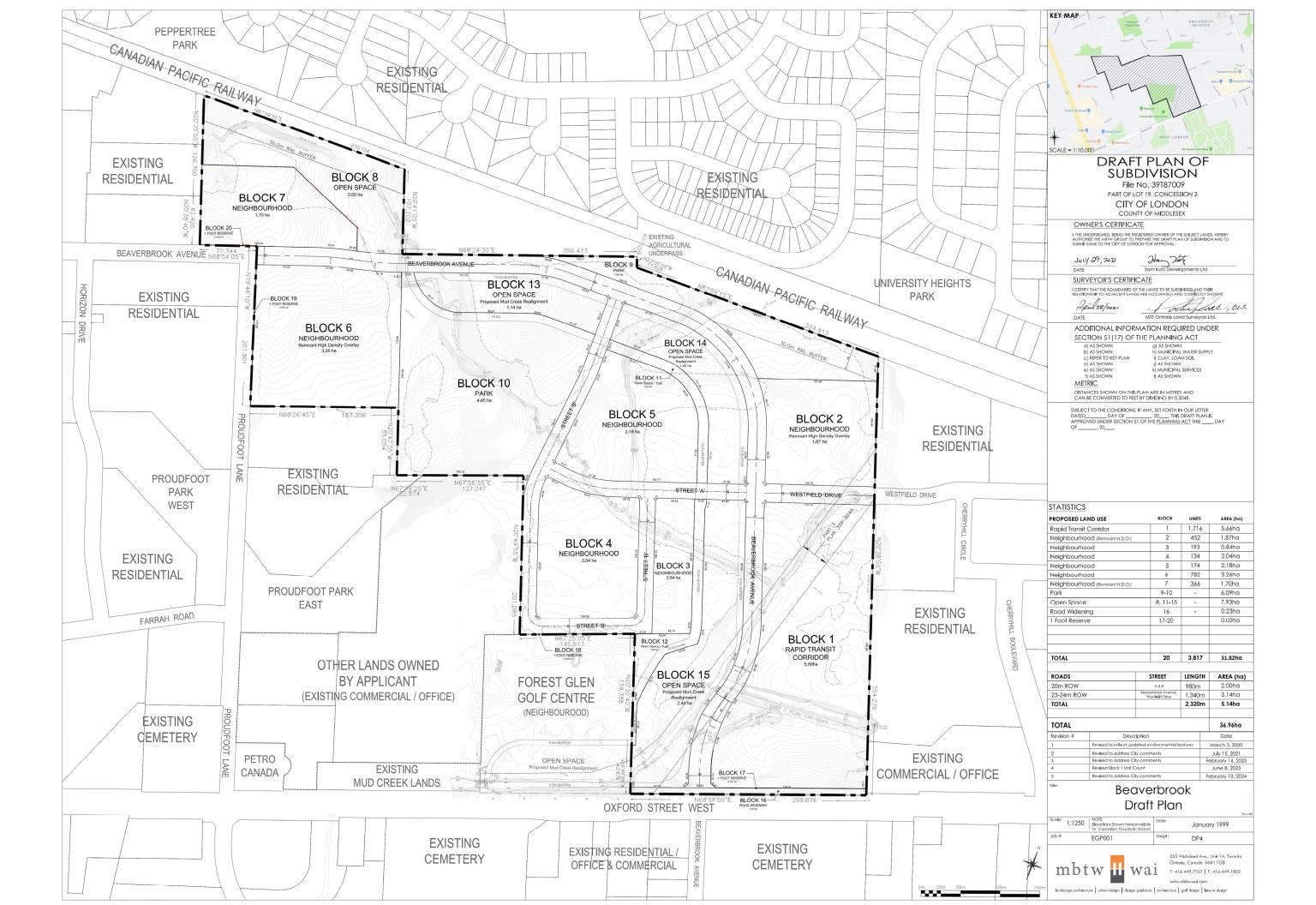
ATTACHMENT 1

2021 and 2024 Draft Plan Comparison

2021 Draft Plan Submission

2024 Draft Plan Submission

PEPPETIREE	KEY MAP
CAMAGRAM PAGIFIC PARK	
TO THE WAY OF THE PARTY OF THE	
The state of the s	SCALE = 1:10,000 - FT PLAN OF
RESIDENTIAL BLOCK 7 PHISTING OPEN SPACE	DRAFT PLAN OF SUBDIVISION File No. 37187009 PART OF LOT 11, CONCESSION 2
NEIGHBOURHOOD Stills BLOCK 29	CITY OF LONDON COUNTY OF MIDDLESEX OWNERS CERTIFICATE
BEAVERBROOK AVENUE - 22-450. THE METERS OF 28-473 WISCHARD	I transcerzione la fine del recommon ciento de la seccione con esta del consolitato del consol
BLOCK 13 OPEN SPACE PROPRIES PACE PROPRIES P	
RESIDENTIAL BLOCK 6 REGIGIEGURIPHODO RESIDENTIAL BLOCK 14 RESIDENTIAL	DATE Mill Onland Land Surveyon Ltd. ADDITIONAL INFORMATION REQUIRED UNDER
NEGRIBOURHOUD Research Code Service Code Ser	SECTION \$1(17) OF THE PLANNING ACT 0.5 SECTION 0.5 SEC
PARK 455 187.306 BLOCK 5	SECTION OF SECTION OF SECTION AND ADMINISTRATION OF SECTION OF SEC
	XISTING SECTION SECTIO
PROUDFOOT EXISTING RESIDENTIAL NOTES TO THE PARK RESIDENTIAL NOTES	
WEST PLOCKA	
EXISTING EXISTING EXISTING	Neighbourhood Neighbourhood 2 452 1.87ho
RESIDENTIAL PROUDFOOT PARK EAST	Neighbourhood 6 782 3.28/na Neighbourhood 782 3.28/na 782 78
FARRAH ROAD FARRAH ROAD RESIDE	
OTHER LANDS OWNED	TOTAL 20 3.817 31.82ho
BY APPLICANT (EXISTING COMMERCIAL / OFFICE) EXISTING E	23-24m ROW
GEMETERY TO THE STATE OF THE ST	TOTAL 34.94ha
EXISTING MUD CREEK LANDS EXISTING MUD CREEK LANDS EXISTING MUD CREEK LANDS EXISTING MUD CREEK LANDS	
OXFORD STREET WEST OXFORD STREET	Draft Plan Market 1:1250 Market Rependence of the plant Date: January 1999
EXISTING CEMETERY EXISTING RESIDENTIAL / OFFICE COMMERCIAL EXISTING CEMETERY	200 N EGP001 Degr. DP4
	im 50m 00m 150m


2021 Draft Plan	2024 Draft Plan	Notes
Block 1	Block 1	Combined into one Rapid Transit Corridor Block
Block 2	DIOCK I	Combined into one Rapid Transit Comdor Block
Block 3	Block 2	Shifted block number & revised block shape
Block 4	Block 3	Shifted block number
Block 5	Block 4	Shifted block number
Block 6	Block 5	Shifted block number
Block 7	Block 6	Shifted block number
Block 8	Block 7	Developable area of original block
DIOCK O	Block 8	Environmental Area of original block
Block 9	Block 9	Expanded block area
Block 10	Block 10	Combined due to revised block and read leveut
Block 11	DIOUK TO	Combined due to revised block and road layout

2021 Draft Plan	2024 Draft Plan	Notes
Block 12	Block 13	Shifted block number
Plack 12	Block 11	Open Space / Trail removed from channel
Block 13	Block 14	Channel only
Block 14	Block 12	Open Space / Trail removed from channel
DIOCK 14	Block 15	Channel only
Block 15	Block 16	Shifted block number
Block 16	Block 17	Shifted block number
Block 17	Block 18	Shifted block number
N/A	Block 19	Added Reserve Block
N/A	Block 20	Added Reserve Block

2021 to 2024 Draft Plan Comparison

ATTACHMENT 2

Draft Plan (2023-02-28)

ATTACHMENT 3

Future Total 2035 Synchro Reports

Future Total 2035 AM Peak Hour

1: Wonderland Road & Beaverbrook Avenue

	,	\rightarrow	*	1	•	-	1	Ť	-	-	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	7	7	1	7	7	**	7	7	^	7
Traffic Volume (vph)	177	214	168	32	106	199	78	1138	41	295	1352	106
Future Volume (vph)	177	214	168	32	106	199	78	1138	41	295	1352	106
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	4	8	8	- 8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	7.0	7.0	7.0	7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Minimum Split (s)	9.0	39.7	39.7	39.7	39.7	39.7	9.5	32.3	32.3	9.5	32.3	32.3
Total Split (s)	9.0	48.7	48.7	39.7	39.7	39.7	11.3	55.9	55.9	25.4	70.0	70.0
Total Split (%)	6.9%	37.5%	37.5%	30.5%	30.5%	30.5%	8.7%	43.0%	43.0%	19.5%	53.8%	53.8%
Yellow Time (s)	3.0	3.3	3.3	3.3	3.3	3.3	3.0	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	1.0	3.4	3.4	3.4	3.4	3.4	1.0	2.2	2.2	1.0	2.2	2.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Lead/Lag	Lead		1994	Lag	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	31.7	29.0	29.0	20.0	20.0	20.0	69.0	59.6	59.6	90.3	76.9	76.9
Actuated g/C Ratio	0.24	0.22	0.22	0.15	0.15	0.15	0.53	0.46	0.46	0.69	0.59	0.59
v/c Ratio	0.76	0.58	0.42	0.21	0.42	0.54	0.47	0.79	0.06	0.82	0.71	0.14
Control Delay	61.7	49.2	14.1	46.1	51.6	10.1	20.5	35.9	0.2	47.7	23.5	4.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	61.7	49.2	14.1	46.1	51.6	10.1	20.5	35.9	0.2	47.7	23.5	4.9
LOS	E	D	В	D	D	В	C	D	A	D	C	A
Approach Delay		42.6			26.5			33.8			26.4	
Approach LOS		D			C			C			C	
Intersection Summary												
Cycle Length: 130	100											
Actuated Cycle Length: 13	80											
Offset: 0 (0%), Referenced	d to phase 2:	NBTL an	d 6:SBTL	Start of	Green							

Natural Cycle: 125 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.82

Intersection Signal Delay: 31.1 Intersection Capacity Utilization 89.7% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service E

Splits and Phases: 1: Wonderland Road & Beaverbrook Avenue

Mudcreek TIS Synchro 11 Report **TYLin** Page 1

HCM Signalized Intersection Capacity Analysis 1: Wonderland Road & Beaverbrook Avenue

Future Total 2035 AM Peak Hour

	1	→	•	1	•	•	1	1	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	4	7	*	†	7	*	44	7	7	44	7
Traffic Volume (vph)	177	214	168	32	106	199	78	1138	41	295	1352	108
Future Volume (vph)	177	214	168	32	106	199	78	1138	41	295	1352	106
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.3	3.0	3.5	3.0	3.0	3.5	3.0
Total Lost time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	1.00	0.94	1.00	1.00	0.94
Flpb, ped/bikes	0.98	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1623	1807	1478	1664	1773	1436	1531	3433	1422	1652	3500	1286
Flt Permitted	0.55	1.00	1.00	0.61	1.00	1.00	0.13	1.00	1.00	0.09	1.00	1.00
Satd. Flow (perm)	933	1807	1478	1075	1773	1436	209	3433	1422	161	3500	1286
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	192	233	183	35	115	216	85	1237	45	321	1470	115
RTOR Reduction (vph)	0	0	104	0	0	183	0	0	24	0	0	40
Lane Group Flow (vph)	192	233	79	35	115	33	85	1237	21	321	1470	75
Confl. Peds. (#/hr)	35	10000	14	14	11.6	35	17	3000	15	15		17
Heavy Vehicles (%)	2%	4%	5%	0%	6%	3%	10%	4%	0%	2%	2%	10%
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	29.0	29.0	29.0	20.0	20.0	20.0	66.7	59.7	59.7	88.0	77.0	77.0
Effective Green, g (s)	29.0	29.0	29.0	20.0	20.0	20.0	66.7	59.7	59.7	88.0	77.0	77.0
Actuated g/C Ratio	0.22	0.22	0.22	0.15	0.15	0.15	0.51	0.46	0.46	0.68	0.59	0.59
Clearance Time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	234	403	329	165	272	220	178	1576	653	387	2073	761
v/s Ratio Prot	c0.03	0.13			0.06		0.03	0.36		c0.15	0.42	
v/s Ratio Perm	c0.15	111111111	0.05	0.03		0.02	0.22	0.000	0.01	c0.40		0.06
v/c Ratio	0.82	0.58	0.24	0.21	0.42	0.15	0.48	0.78	0.03	0.83	0.71	0.10
Uniform Delay, d1	48.4	45.0	41.5	48.1	49.8	47.6	17.8	29.7	19.3	34.4	18.6	11.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	20.1	2.0	0.4	0.6	1.1	0.3	2.0	4.0	0.1	13.7	2.1	0.3
Delay (s)	68.5	47.1	41.8	48.8	50.8	48.0	19.8	33.7	19.4	48.1	20.7	11.7
Level of Service	Е	D	D	D	D	D	В	C	В	D	C	8
Approach Delay (s)		52.2			48.9			32.4			24.8	
Approach LOS		D			D			C			C	
Intersection Summary												
HCM 2000 Control Delay			33.2	н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.87									
Actuated Cycle Length (s)			130.0	S	um of los	time (s)			21.0			
Intersection Capacity Utilizat	ion		89.7%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group			0.81									

Mudcreek TIS Synchro 11 Report TYLin Page 2 HCM Unsignalized Intersection Capacity Analysis 2: Proudfoot Lane & Beaverbrook Avenue

Future Total 2035 AM Peak Hour 06-13-2023

	,	-	*	-	•	•	1	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	9	26	110	25	34	16	263	9	20	167	31	11
Future Volume (vph)	9	26	110	25	34	16	263	9	20	167	31	- 11
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	10	28	120	27	37	17	286	10	22	182	34	12
Direction, Lane #	EB 1	WB1	NB 1	SB 1								
Volume Total (vph)	158	81	318	228								
Volume Left (vph)	10	27	286	182								
Volume Right (vph)	120	17	22	12								
Hadj (s)	-0.29	-0.03	0.23	0.16								
Departure Headway (s)	5.2	5.6	5.1	5.2								
Degree Utilization, x	0.23	0.13	0.45	0.33								
Capacity (veh/h)	626	566	674	654								
Control Delay (s)	9.7	9.4	12.3	10.7								
Approach Delay (s)	9.7	9.4	12.3	10.7								
Approach LOS	Α	Α	В	В								
Intersection Summary			- Street Co									
Delay			11.0									
Level of Service			В									- 3
Intersection Capacity Utiliza	ion		37.1%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

Timings 3: Proudfoot Lane & Oxford Street West Future Total 2035 AM Peak Hour 06-13-2023

	•	-	-	•	•	1	†	-	1	Ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	*	† 12	7	**	*	7	†	7	7	12	
Traffic Volume (vph)	105	1464	21	818	211	120	168	54	378	95	
Future Volume (vph)	105	1464	21	818	211	120	168	54	378	95	
Turn Type	pm+pt	NA.	Perm	NA	custom	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	5	2		6	3	7	4		3	8	
Permitted Phases	2		6		2	- 4		4	8		
Detector Phase	5	2	6	6	3	7	- 4	4	3	8	
Switch Phase											
Minimum Initial (s)	5.0	7.0	7.0	7.0	5.0	5.0	7.0	7.0	5.0	7.0	
Minimum Split (s)	9.0	23.6	23.6	23.6	9.5	9.0	31.4	31.4	9.5	31.4	
Total Split (s)	9.0	73.4	64.4	64.4	25.2	13.0	31.4	31.4	25.2	43.6	
Total Split (%)	6.9%	56.5%	49.5%	49.5%	19.4%	10.0%	24.2%	24.2%	19.4%	33.5%	
Yellow Time (s)	3.0	3.7	3.7	3.7	3.0	3.0	3.3	3.3	3.0	3.3	
All-Red Time (s)	1.0	1.9	1.9	1.9	1.0	1.0	3.1	3.1	1.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	5.6	5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Lead/Lag	Lead		Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	75.8	74.2	62.6	62.6	97.0	29.9	18.6	18.6	46.2	30.9	
Actuated g/C Ratio	0.58	0.57	0.48	0.48	0.75	0.23	0.14	0.14	0.36	0.24	
v/c Ratio	0.38	0.89	0.47	0.55	0.21	0.45	0.71	0.19	1.07	0.46	
Control Delay	17.4	32.3	65.0	28.6	0.9	35.6	68.2	1.4	100.6	38.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	17.4	32.3	65.0	28.6	0.9	35.6	68.2	1.4	100.6	38.4	
LOS	В	C	E	C	A	D	E	A	F	D	
Approach Delay		31.4		23.8			46.2			81.8	
Approach LOS		C		C			D			F	

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.07

Intersection Signal Delay: 38.2 Intersection Capacity Utilization 98.7% Analysis Period (min) 15 Intersection LOS: D

ICU Level of Service F

Splits and Phases: 3: Proudfoot Lane & Oxford Street West

Mudcreek TIS Synchro 11 Report **TYLin** Page 3

Mudcreek TIS TYLin

HCM Signalized Intersection Capacity Analysis 3: Proudfoot Lane & Oxford Street West

Future Total 2035 AM Peak Hour 06-13-2023

	,	-	*	1	•	•	1	†	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	1		*	44	7	7	4	7	*	14	
Traffic Volume (vph)	105	1464	66	21	818	211	120	168	54	378	95	70
Future Volume (vph)	105	1464	66	21	818	211	120	168	54	378	95	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.0	3.0	3.3	3.5	3.0	3.2	3.6	3.2	3.0	3.4	3.3
Total Lost time (s)	4.0	5.6		5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.97	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.94	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1685	3271		1517	3368	1418	1615	1792	1384	1644	1550	
Fit Permitted	0.21	1.00		0.06	1.00	1.00	0.64	1.00	1.00	0.35	1.00	
Satd. Flow (perm)	379	3271		102	3368	1418	1095	1792	1384	609	1550	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	1591	72	23	889	229	130	183	59	411	103	76
RTOR Reduction (vph)	0	2	0	0	0	46	0	0	51	0	22	- (
Lane Group Flow (vph)	114	1661	0	23	889	183	130	183	8	411	157	- (
Confl. Peds. (#/hr)	2	1220	5	5	7777	2	10		15	15	375	10
Heavy Vehicles (%)	0%	2%	6%	15%	6%	4%	6%	6%	5%	2%	19%	09
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	6	0	0	(
Turn Type	pm+pt	NA		Perm	NA	custom	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	5	2		1.01111	6	3	7	4	1.4000	3	8	
Permitted Phases	2			6		2	4		4	8		
Actuated Green, G (s)	74.2	74.2		62.6	62.6	95.4	27.5	18.6	18.6	43.8	30.9	
Effective Green, g (s)	74.2	74.2		62.6	62.6	95.4	27.5	18.6	18.6	43.8	30.9	
Actuated g/C Ratio	0.57	0.57		0.48	0.48	0.73	0.21	0.14	0.14	0.34	0.24	
Clearance Time (s)	4.0	5.6		5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	292	1866		49	1621	1040	267	256	198	373	368	
v/s Ratio Prot	0.02	c0.51		10.45	0.26	0.03	0.03	0.10	1897	c0.18	0.10	
v/s Ratio Perm	0.20	***********		0.23	1000000	0.10	0.07	000000	0.01	c0.19	The second	
v/c Ratio	0.39	0.89		0.47	0.55	0.18	0.49	0.71	0.04	1.10	0.43	
Uniform Delay, d1	15.2	24.3		22.6	23.7	5.3	43.9	53.2	48.0	39.4	42.0	
Progression Factor	1.00	1.00		1.22	1.11	0.42	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.9	6.9		26.4	1.2	0.1	1.4	9.1	0.1	76.9	0.8	
Delay (s)	16.1	31.2		53.9	27.6	2.3	45.3	62.3	48.1	116.3	42.8	
Level of Service	В	C		D	C	A	D	E	D	F	D	
Approach Delay (s)	- 5	30.2		- 3	23.1		1.50	54.1	181	10000	94.0	
Approach LOS		С			С			D			F	
Intersection Summary												
			40.1	H	CM 2000	Level of	Service		D			
HCM 2000 Control Delay			40.1	1.0								
HCM 2000 Control Delay HCM 2000 Volume to Capa	city ratio		1.03	1.0								
	city ratio					st time (s)			20.0			
HCM 2000 Volume to Capa	ordinings.		1.03	Si	um of los	st time (s)	9		20.0 F			

Synchro 11 Report Page 5 Mudcreek TIS TYLin

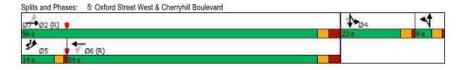
Future Total 2035 AM Peak Hour

Timings 4: Beaverbrook Avenue & Oxford Street West

	1	→	1	←	1	†	1	1	ţ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	1	*	1		4	7	*	1	7	
Traffic Volume (vph)	16	1771	92	959	23	24	230	219	85	46	
Future Volume (vph)	16	1771	92	959	23	24	230	219	85	46	
Turn Type	Perm	NA.	pm+pt	NA	Perm	NA	Perm	pm+pt	NA	Perm	
Protected Phases		2	1	6		8		7	4		
Permitted Phases	2		6		8		8	4		4	
Detector Phase	2	2	-1	6	8	8	8	7	4	4	
Switch Phase								4			
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	41.1	41.1	9.0	41.1	31.8	31.8	31.8	9.0	31.8	31.8	
Total Split (s)	80.1	80.1	9.0	89.1	31.9	31.9	31.9	9.0	40.9	40.9	
Total Split (%)	61.6%	61.6%	6.9%	68.5%	24.5%	24.5%	24.5%	6.9%	31.5%	31.5%	
Yellow Time (s)	3.5	3.5	3.0	3.5	3.3	3.3	3.3	3.0	3.3	3.3	
All-Red Time (s)	3.6	3.6	1.0	3.6	2.5	2.5	2.5	1.0	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	4.0	7.1		5.8	5.8	4.0	5.8	5.8	
Lead/Lag	Lag	Lag	Lead	10/20	Lag	Lag	Lag	Lead		2000	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes	Yes	Yes	Yes			
Recall Mode	C-Max	C-Max	None	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	78.4	78.4	90.5	87.4		20.7	20.7	31.5	29.7	29.7	
Actuated g/C Ratio	0.60	0.60	0.70	0.67		0.16	0.16	0.24	0.23	0.23	
v/c Ratio	0.06	0.96	0.94	0.50		0.22	0.79	0.79	0.21	0.12	
Control Delay	12.1	23.0	110.6	7.3		47.4	48.4	63.3	40.2	5.1	
Queue Delay	0.0	1.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	12.1	24.0	110.6	7.3		47.4	48.4	63.3	40.2	5.1	
LOS	В	C	F	A		D	D	E	D	A	
Approach Delay		23.9		15.9		48.3			50.1		
Approach LOS		C		В		D			D		
Intersection Summary											
Cycle Length: 130	00										
Actuated Cycle Length: 13		CDTI	J CAUDTI	Clast of	C						
Offset: 0 (0%), Reference	a to phase 2	EBILan	0 6:MR IT	., Start of	Green						
Natural Cycle: 135	CONTRACTOR OF THE										
Control Type: Actuated-C	oordinated										
Maximum v/c Ratio: 0.96	00.0					. 1 00 0					
Intersection Signal Delay:					ntersectio						
Intersection Capacity Utili	zation 90.6%			- N	CU Level	of Service	eΕ				
Analysis Period (min) 15											

Splits and Phases: 4: Beaverbrook Avenue & Oxford Street West

Mudcreek TIS Synchro 11 Report TYLin Page 6 HCM Signalized Intersection Capacity Analysis 4: Beaverbrook Avenue & Oxford Street West Future Total 2035 AM Peak Hour 06-13-2023


	1	-	*	1	•	-	4	†	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	1		7	1			4	7	*	4	7
Traffic Volume (vph)	16	1771	29	92	959	65	23	24	230	219	85	46
Future Volume (vph)	16	1771	29	92	959	65	23	24	230	219	85	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.3	3.3	3.0	3.5	3.5	3.3	3.3	3.3	3.7	3.7	3.7
Total Lost time (s)	7.1	7.1		4.0	7.1			5.8	5.8	4.0	5.8	5.8
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.99			1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00			0.98	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1789	3382		1465	3317			1739	1446	1789	1883	1601
Flt Permitted	0.24	1.00		0.05	1.00			0.83	1.00	0.61	1.00	1.00
Satd. Flow (perm)	455	3382		75	3317			1481	1446	1142	1883	1601
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	1925	32	100	1042	71	25	26	250	238	92	50
RTOR Reduction (vph)	0	1	0	0	3	0	0	0	86	0	0	39
Lane Group Flow (vph)	17	1956	0	100	1110	0	0	51	164	238	92	11
Confl. Peds. (#/hr)	20110		. 7	7								
Heavy Vehicles (%)	2%	2%	6%	15%	6%	2%	0%	2%	8%	2%	2%	29
Bus Blockages (#/hr)	0	4	0	0	4	0	0	5	0	0	0	(
Turn Type	Perm	NA		pm+pt	NA	161	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases		2		- 1	6			8		7	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green, G (s)	78.4	78.4		87.4	87.4			20.7	20.7	29.7	29.7	29.7
Effective Green, g (s)	78.4	78.4		87.4	87.4			20.7	20.7	29.7	29.7	29.7
Actuated g/C Ratio	0.60	0.60		0.67	0.67			0.16	0.16	0.23	0.23	0.23
Clearance Time (s)	7.1	7.1		4.0	7.1			5.8	5.8	4.0	5.8	5.8
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	274	2039		103	2230			235	230	285	430	365
v/s Ratio Prot		0.58		c0.04	0.33					c0.03	0.05	
v/s Ratio Perm	0.04			c0.61				0.03	0.11	c0.16		0.01
v/c Ratio	0.06	0.96		0.97	0.50			0.22	0.71	0.84	0.21	0.03
Uniform Delay, d1	10.6	24.3		37.1	10.5			47.6	51.8	48.3	40.7	39.0
Progression Factor	0.92	0.61		2.18	0.59			1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	6.3		74.3	0.7			0.5	10.0	18.6	0.3	0.0
Delay (s)	10.0	21.1		155.1	6.9			48.1	61.9	66.9	40.9	39.0
Level of Service	A	C		F	A			D	E	E	D	0
Approach Delay (s)		21.0			19.1			59.5			56.9	
Approach LOS		С			В			E			E	
Intersection Summary												
HCM 2000 Control Delay			27.0	Н	CM 2000	Level of :	Service		С			
			0.00									
HCM 2000 Volume to Capac	ity ratio		0.98									
HCM 2000 Volume to Capac Actuated Cycle Length (s)	city ratio		130.0	S	um of lost	time (s)			20.9			
	references				um of lost U Level o	And			20.9 E			

Mudcreek TIS Synchro 11 Report TYLin Page 7

Timings 5: Oxford Street West & Cherryhill Boulevard

Future Total 2035 AM Peak Hour 06-13-2023

		-	*		7	- 1	-	*	•	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	1	7	1	7	1	7	4	7	
Traffic Volume (vph)	166	1875	26	957	18	3	150	22	102	
Future Volume (vph)	166	1875	26	957	18	3	150	22	102	
Turn Type	pm+pt	NA.	Perm	NA	Split	NA	Split	NA	pm+ov	
Protected Phases	5	2		6	7	7	4	4	5	
Permitted Phases	2		6						4	
Detector Phase	5	2	6	6	7	7	4	4	5	
Switch Phase										
Minimum Initial (s)	5.0	7.0	7.0	7.0	5.0	5.0	7.0	7.0	5.0	
Minimum Split (s)	9.0	41.1	41.1	41.1	9.0	9.0	22.5	22.5	9.0	
Total Split (s)	14.0	98.0	84.0	84.0	9.0	9.0	23.0	23.0	14.0	
Total Split (%)	10.8%	75.4%	64.6%	64.6%	6.9%	6.9%	17.7%	17.7%	10.8%	
Yellow Time (s)	3.0	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	
All-Red Time (s)	1.0	3.6	3.6	3.6	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.1	7.1	7.1	4.0	4.0	4.5	4.5	4.0	
Lead/Lag	Lead		Lag	Lag	10,000				Lead	
Lead-Lag Optimize?	Yes		Yes	Yes					Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	
Act Effct Green (s)	101.9	98.8	86.2	86.2	5.8	5.8	13.6	13.6	22.8	
Actuated g/C Ratio	0.78	0.76	0.66	0.66	0.04	0.04	0.10	0.10	0.18	
v/c Ratio	0.49	0.83	0.44	0.52	0.27	0.24	0.57	0.56	0.34	
Control Delay	7.0	8.8	42.0	13.7	69.4	39.9	68.5	67.0	8.6	
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.0	8.9	42.0	13.7	69.4	39.9	68.5	67.0	8.6	
LOS	A	A	D	В	E	D	E	E	A	
Approach Delay		8.8		14.4		56.3		45.7		
Approach LOS		A		В		E		D		
ntersection Summary										
Cycle Length: 130										
Actuated Cycle Length: 13	n									
Offset: 0 (0%), Referenced		FRTI an	ITAM-a h	Start of	Green					
Natural Cycle: 105	to priase 2.	LDTL dill	U U.VIDIL	, otali or	Olegii					
Control Type: Actuated-Co	ordinated									
	urumateu									
Maximum v/c Ratio: 0.83										
Maximum v/c Ratio: 0.83	13.8			In	tersection	LOS B				
Maximum v/c Ratio: 0.83 Intersection Signal Delay: 1 Intersection Capacity Utiliza					tersection		F			

Mudcreek TIS TYLin

	,	-	-	1	•	•	4	†	-	1	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		*	1		7	1		*	नी	7
Traffic Volume (vph)	166	1875	81	26	957	59	18	3	12	150	22	102
Future Volume (vph)	166	1875	81	26	957	59	18	3	12	150	22	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.8	3.3	3.3	3.1	3.3	3.5	3.4	3.5	3.5	3.2	3.3	3.6
Total Lost time (s)	4.0	7.1		7.1	7.1		4.0	4.0		4.5	4.5	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.71		1.00	1.00	0.94
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.99		1.00	0.99		1.00	0.88		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	1661	3363		1705	3224		1665	1169		1546	1610	1341
Fit Permitted	0.20	1.00		0.05	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	358	3363		98	3224		1665	1169		1546	1610	1341
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	180	2038	88	28	1040	64	20	3	13	163	24	111
RTOR Reduction (vph)	0	2	0	0	3	0	0	13	0	0	0	92
Lane Group Flow (vph)	180	2124	0	28	1101	0	20	3	0	93	94	19
Confl. Peds. (#/hr)	17	21711	11	- 11	11111	17	42	- 27	51	51	10733	42
Heavy Vehicles (%)	11%	2%	5%	0%	6%	8%	6%	0%	0%	6%	0%	13%
Bus Blockages (#/hr)	0	4	0	0	4	0	0	0	0	0	0	(
Turn Type	pm+pt	NA		Perm	NA	- i	Split	NA		Split	NA	pm+ov
Protected Phases	5	2		. Comme	6		7	7		4	4	pini
Permitted Phases	2			6				-			-	4
Actuated Green, G (s)	97.3	97.3		84.7	84.7		3.5	3.5		13.6	13.6	22.2
Effective Green, g (s)	97.3	97.3		84.7	84.7		3.5	3.5		13.6	13.6	22.2
Actuated g/C Ratio	0.75	0.75		0.65	0.65		0.03	0.03		0.10	0.10	0.17
Clearance Time (s)	4.0	7.1		7.1	7.1		4.0	4.0		4.5	4.5	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	354	2517		63	2100		44	31		161	168	229
v/s Ratio Prot	0.03	c0.63		V	0.34		c0.01	0.00		c0.06	0.06	0.01
v/s Ratio Perm	0.35	50.00		0.29	0.01		100.01	0.00		50.00	0.00	0.01
v/c Ratio	0.51	0.84		0.44	0.52		0.45	0.11		0.58	0.56	0.08
Uniform Delay, d1	6.8	11.2		11.1	12.0		62.3	61.7		55.5	55,4	45.3
Progression Factor	1.16	0.58		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.5	1.5		21.1	0.9		7.3	1.5		4.9	4.0	0.2
Delay (s)	8.3	8.0		32.2	12.9		69.6	63.3		60.4	59.4	45.5
Level of Service	Α.	Α.		C	B		E	E		E	55.4 E	
Approach Delay (s)		8.0		C	13.4		_	66.8		-	54.5	
Approach LOS		Α.			В			E			D	
Intersection Summary												
HCM 2000 Control Delay			13.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.83	1.0	CHI EUUU	Edital di	out flow		5			
Actuated Cycle Length (s)	acity rand		130.0	9	um of lost	time (e)			19.6			
Intersection Capacity Utiliz	ation		87.4%		U Level o				19.0			
Analysis Period (min)	audii		15	P.	o revel (or dervice			2			
c Critical Lane Group			10									

	•	→	•	1	•	•	1	1	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4		7	1		7	1	
Traffic Volume (veh/h)	131	4	128	39	.11	18	77	313	12	10	333	98
Future Volume (Veh/h)	131	4	128	39	11	18	77	313	12	10	333	98
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	142	4	139	42	12	20	84	340	13	11	362	107
Pedestrians		16			20			25			11	
Lane Width (m)		3.7			3.7			3.1			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		1			2			2			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	998	994	456	1084	1042	378	485			373		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	998	994	456	1084	1042	378	485			373		
tC, single (s)	7.2	6.5	6.3	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)		1000	1000		10000	1000						
tF(s)	3.6	4.0	3.4	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	19	98	76	67	94	97	92			99		
cM capacity (veh/h)	176	217	575	126	204	655	1032			1174		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	5, 55, 55, 55					
Volume Total	285	74	84	353	11	469						- 3
Volume Left	142	42	84	0	11	0						
Volume Right	139	20	0	13	0	107						
cSH	268	175	1032	1700	1174	1700						
Volume to Capacity	1.07	0.42	0.08	0.21	0.01	0.28						
Queue Length 95th (m)	87.3	14.5	2.0	0.0	0.2	0.0						
Control Delay (s)	114.7	39.7	8.8	0.0	8.1	0.0						
Lane LOS	F	E	A	0.0	A	0.0						
Approach Delay (s)	114.7	39.7	1.7		0.2							
Approach LOS	F	E			U.E							
Intersection Summary												
Average Delay			28.6									- 1
Intersection Capacity Utiliza	ation		56.3%	IC	U Level	of Service			В			
Analysis Period (min)	-0.00		15		200000000000000000000000000000000000000	*******			10000			

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 9

 Muddreek TIS
 Synchro 11 Report

 TYLin
 Page 10

HCM Unsignalized Intersection Capacity Analysis 101: Beaverbrook Avenue & Street A/Westfield Drive

Future Total 2035 AM Peak Hour 06-13-2023

	•	-	•	1	←	•	4	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			4	
Traffic Volume (veh/h)	0	39	118	116	28	0	53	16	82	69	116	
Future Volume (Veh/h)	0	39	118	116	28	0	53	16	82	69	116	(
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.93
Hourty flow rate (vph)	0	42	128	126	30	0	58	17	89	75	126	- (
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								110110				
Upstream signal (m)								319				
pX, platoon unblocked												
vC, conflicting volume	468	498	126	602	454	62	126			106		
vC1, stage 1 conf vol	100	100			101					100		
vC2, stage 2 conf vol												
vCu, unblocked vol	468	498	126	602	454	62	126			106		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)					2.00	2000	- 111			- 111		
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	90	86	59	93	100	96			95		
cM capacity (veh/h)	448	432	924	306	458	1004	1460			1485		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1	100000000000000000000000000000000000000	191103	500000			83,60020		_
Volume Total	170	156	164	201								
Volume Left	0	126	58	75								
Volume Right	128	0	89	0								
cSH Kight	721	327	1460	1485								
Volume to Capacity	0.24	0.48	0.04	0.05								
Queue Length 95th (m)	6.9	18.7	0.04	1.2								
Control Delay (s)	11.5	25.7	2.9	3.1								
Lane LOS	11.5 B	20.7 D	Z.9	3.1 A								
	11.5	25.7	2.9	3.1								
Approach Delay (s)	11.5 B	25.7 D	2.9	3.1								
Approach LOS	В	U										
Intersection Summary												
Average Delay			10.2									
Intersection Capacity Utilization	1		39.8%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 11

HCM Unsignalized Intersection Capacity Analysis 102: Street B & Beaverbrook Avenue Future Total 2035 AM Peak Hour 06-13-2023

	-	*	1	•	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	14			4	14		
Traffic Volume (veh/h)	167	46	0	16	59	18	
Future Volume (Veh/h)	167	46	0	16	59	18	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	182	50	0	17	64	20	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting valume			232		224	207	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			232		224	207	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free %			100		92	98	
cM capacity (veh/h)			1336		764	833	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	232	17	84				
Volume Left	0	0	64				
Volume Right	50	0	20				
cSH	1700	1336	780				
Volume to Capacity	0.14	0.00	0.11				
Queue Length 95th (m)	0.0	0.0	2.7				
Control Delay (s)	0.0	0.0	10.2				
Lane LOS			В				
Approach Delay (s)	0.0	0.0	10.2				
Approach LOS			В				
Intersection Summary							
Average Delay			2.6				
Intersection Capacity Utilization	on		22.1%	IC	U Level o	f Service	Α
Analysis Period (min)			15				

 Muddreek TIS
 Synchro 11 Report

 TYLin
 Page 12

Synchro 11 Report Page 14

	١	→	•	1	←	•	1	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			44	
Traffic Volume (veh/h)	0	31	0	45	20	16	0	0	94	32	0	(
Future Volume (Veh/h)	0	31	0	45	20	16	0	0	94	32	0	(
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph) Pedestrians	0	34	0	49	22	17	0	0	102	35	0	(
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	39			34			162	171	34	264	162	30
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	39			34			162	171	34	264	162	30
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF(s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			97			100	100	90	94	100	100
cM capacity (veh/h)	1571			1578			783	700	1039	606	707	1044
Direction, Lane #	EB1	WB 1	NB 1	SB 1								*
Volume Total	34	88	102	35								
Volume Left	0	49	0	35								
Volume Right	0	17	102	0								
cSH	1571	1578	1039	606								
Volume to Capacity	0.00	0.03	0.10	0.06								
Queue Length 95th (m)	0.0	0.7	2.5	1.4								
Control Delay (s)	0.0	4.2	8.8	11.3								
Lane LOS		A	A	В								
Approach Delay (s)	0.0	4.2	8.8	11.3								
Approach LOS			A	В								
Intersection Summary												
Average Delay			6.4									
Intersection Capacity Utiliza	ation		24.8%	10	CU Level o	of Service			Α			
Analysis Period (min)			15									

	1	•	†	~	1	1		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		14			र्स		
Traffic Volume (veh/h)	20	0	14	31	0	32		
Future Volume (Veh/h)	20	0	14	31	0	32		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	22	0	15	34	0	35		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)			140110			110110		
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	67	32			49			
vC1, stage 1 conf vol	UI.	52			70			
vC2, stage 2 conf vol								
vCu, unblocked vol	67	32			49			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.4	V.E			40.1			
tF (s)	3.5	3.3			2.2			
p0 queue free %	98	100			100			
cM capacity (veh/h)	938	1042			1558			
		1507	222		1556			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	22	49	35					
Volume Left	22	0	0					
Volume Right	0	34	0					
cSH	938	1700	1558					
Volume to Capacity	0.02	0.03	0.00					
Queue Length 95th (m)	0.5	0.0	0.0					
Control Delay (s)	8.9	0.0	0.0					
Lane LOS	A							
Approach Delay (s)	8.9	0.0	0.0					
Approach LOS	A							
Intersection Summary								
Average Delay			1.9					
Intersection Capacity Utilizat	tion		12.3%	IC	U Level o	f Service	A	
Analysis Period (min)			15					

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 13

Mudcreek TIS TYLin

	1	•	†	~	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		14			र्स	
Traffic Volume (veh/h)	0	77	14	0	14	32	
Future Volume (Veh/h)	0	77	14	0	14	32	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	84	15	0	15	35	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	80	15			15		
vC1, stage 1 conf vol	-				10		
vC2, stage 2 conf vol							
vCu, unblocked vol	80	15			15		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	- 2						
tF(s)	3.5	3.3			2.2		
p0 queue free %	100	92			99		
cM capacity (veh/h)	914	1065			1603		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	84	15	50				
Volume Left	0	15	15				
Volume Lett Volume Right	84	0	13				
volume Right cSH	1065	1700	1603				
	0.08	0.01	0.01				
Volume to Capacity	1.9	0.01	0.01				
Queue Length 95th (m)	1000						
Control Delay (s)	8.7	0.0	2.2	_			
Lane LOS	A	0.0	A				
Approach Delay (s)	8.7	0.0	2.2				
Approach LOS	A						
Intersection Summary							
Average Delay			5.6				
Intersection Capacity Utiliza	ation		19.5%	IC	U Level o	of Service	Α
Analysis Period (min)			15				

Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	0 0 0 Free 0% 0.92 0	0 0 0 0.92 0	0 0 0 0.92 0	WBT 0 0 0 Free 0% 0.92 0	0 0 0 Stop 0% 0.92	NBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	0 0 Free 0% 0.92	0.92	0 0	0 0 Free 0% 0.92	0 0 0 Stop 0% 0.92	0	
Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	0 0 Free 0% 0.92	0.92	0.92	0 0 Free 0% 0.92	0 0 Stop 0% 0.92	0	
Future Volume (Veh/h) Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	0% 0.92	0.92	0.92	Free 0% 0.92	Stop 0% 0.92		
Sign Control Grade Peak Hour Factor Hourly flow rate (vph)	0% 0.92		7077	0% 0.92	0% 0.92	0.00	
Grade Peak Hour Factor Hourly flow rate (vph)	0.92		7077	0.92	0.92	0.00	
Peak Hour Factor Hourly flow rate (vph)	0.92		7077	0.92	0.92	0.00	
	0	0	0	0		U.SZ	
					0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
	None			None			
Median storage veh)	nicotornos.						
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting valume			0		0	0	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			0		0	0	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1623		1023	1085	
Direction, Lane #	EB1	WB 1	NB 1			130000	
Volume Total	0	0	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
	1700	1700	1700				
	0.00	0.00	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS	0.0	0.0	A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS	0.0	0.0	A				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization			0.0%	IC	III evel	of Service	A
Analysis Period (min)			15	10	201010		

Synchro 11 Report Page 15 Mudcreek TIS TYLin

Synchro 11 Report Page 16 Mudcreek TIS TYLin

	-	*	-	•	1	-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1.			4	*	7		
Traffic Volume (veh/h)	0	0	0	0	0	0		
Future Volume (Veh/h)	0	0	0	0	0	0		
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourty flow rate (vph)	0	0	0	0	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None			None				
Median storage veh)	140176			740110				
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume			0		0	0		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol			0		0	0		
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)			4.1		0.4	0.2		
tF (s)			2.2		3.5	3.3		
p0 queue free %			100		100	100		
cM capacity (veh/h)			1623		1023	1085		
	ED 4	MID 4	3 (357)	ND 0	1020	1000		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2				
Volume Total	0	0	0	0				
Volume Left	0	0	0	0				
Volume Right	0	0	0	0				
cSH	1700	1700	1700	1700				
Volume to Capacity	0.00	0.00	0.00	0.00				
Queue Length 95th (m)	0,0	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0	0.0				
Lane LOS			A	A				
Approach Delay (s)	0.0	0.0	0.0					
Approach LOS			A					
Intersection Summary								
Average Delay			0.0					
Intersection Capacity Utiliza	ation		0.0%	IC	U Level o	of Service	A	
Analysis Period (min)			15					

	1	-	•	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	1		**			
Traffic Volume (veh/h)	0	0	0	0	0	0		
Future Volume (Veh/h)	0	0	0	0	0	0		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	0	0	0	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting valume	0				0	0		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	0				0	0		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF(s)	2.2				3.5	3.3		
p0 queue free %	100				100	100		
cM capacity (veh/h)	1623				1023	1085		
Direction, Lane #	EB1	WB 1	SB 1		***************************************	1,000,000		
Volume Total	0	0	0					
Volume Left	0	0	0					
Volume Right	0	0	0					
cSH	1700	1700	1700					
Volume to Capacity	0.00	0.00	0.00					
Queue Length 95th (m)	0.0	0.0	0.0					
Control Delay (s)	0.0	0.0	0.0					
Lane LOS			A					
Approach Delay (s)	0.0	0.0	0.0					
Approach LOS			A					
Intersection Summary								
Average Delay			0.0					
Intersection Capacity Utilization	on		0.0%	IC	U Level	of Service	A	
Analysis Period (min)			15					

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 17

 Muddreek TIS
 Synchro 11 Report

 TYLin
 Page 18

Future Total 2035 PM Peak Hour

1: Wonderland Road & Beaverbrook Avenue

	,	-	•	1		-	1	T	-	-	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	*	7	7		7	7	**	7	*	^	7
Traffic Volume (vph)	118	278	196	85	361	421	242	1415	65	296	1720	317
Future Volume (vph)	118	278	196	85	361	421	242	1415	65	296	1720	317
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	4	8	8	8	5	2	2	- 1	6	- 6
Switch Phase												
Minimum Initial (s)	5.0	7.0	7.0	7.0	7.0	7.0	5.0	7.0	7.0	5.0	7.0	7.0
Minimum Split (s)	9.0	39.7	39.7	39.7	39.7	39.7	9.0	32.3	32.3	9.0	32.3	32.3
Total Split (s)	9.0	48.7	48.7	39.7	39.7	39.7	19.0	71.3	71.3	25.0	77.3	77.3
Total Split (%)	6.2%	33.6%	33.6%	27.4%	27.4%	27.4%	13.1%	49.2%	49.2%	17.2%	53.3%	53.3%
Yellow Time (s)	3.0	3.3	3.3	3.3	3.3	3.3	3.0	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	1.0	3.4	3.4	3.4	3.4	3.4	1.0	2.2	2.2	1.0	2.2	2.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Lead/Lag	Lead			Lag	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	43.0	40.3	40.3	31.3	31.3	31.3	84.0	65.1	65.1	94.0	71.0	71.0
Actuated g/C Ratio	0.30	0.28	0.28	0.22	0.22	0.22	0.58	0.45	0.45	0.65	0.49	0.49
v/c Ratio	0.96	0.56	0.35	0.44	0.91	0.85	1.00	0.89	0.10	0.95	1.00	0.45
Control Delay	114.5	49.3	6.7	56.8	82.2	40.6	102.5	45.2	0.3	84.6	59.4	14.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	114.5	49.3	6.7	56.8	82.2	40.6	102.5	45.2	0.3	84.6	59.4	14.0
LOS	F	D	A	E	F	D	F	D	A	F	E	Е
Approach Delay		48.2			59.5			51.6			56.5	
Approach LOS		D			Е			D			Ε	
Intersection Summary												

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00

Intersection Signal Delay: 54.5

Intersection LOS: D ICU Level of Service H

Intersection Capacity Utilization 109.5% Analysis Period (min) 15

Mudcreek TIS Synchro 11 Report **TYLin** Page 1

HCM Signalized Intersection Capacity Analysis 1: Wonderland Road & Beaverbrook Avenue

Future Total 2035 PM Peak Hour

	١	→	•	1	•	•	1	1	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	1	7	7	4	7	7	44	7	7	44	7
Traffic Volume (vph)	118	278	196	85	361	421	242	1415	65	296	1720	317
Future Volume (vph)	118	278	196	85	361	421	242	1415	65	296	1720	317
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.5	3.5	3.0	3.5	3.3	3.0	3.5	3.0	3.0	3.5	3.0
Total Lost time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.88
Flpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1665	1789	1494	1615	1842	1465	1668	3535	1378	1668	3500	1290
Flt Permitted	0.15	1.00	1.00	0.52	1.00	1.00	0.06	1.00	1.00	0.06	1.00	1.00
Satd. Flow (perm)	257	1789	1494	891	1842	1465	108	3535	1378	102	3500	1290
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	118	278	196	85	361	421	242	1415	65	296	1720	317
RTOR Reduction (vph)	0	0	142	0	0	180	0	0	36	0	0	78
Lane Group Flow (vph)	118	278	54	85	361	241	242	1415	29	296	1720	239
Confl. Peds. (#/hr)	31	210	26	26	301	31	36	1410	24	24	1120	36
Heavy Vehicles (%)	1%	5%	2%	2%	2%	1%	1%	1%	0%	1%	2%	3%
		NA.			NA			NA.			NA.	
Turn Type Protected Phases	pm+pt 7	NA 4	Perm	Perm	NA 8	Perm	pm+pt		Perm	pm+pt 1	NA 6	Pem
Permitted Phases	4	4:	4	8	- 0	8	5	2	2	100	0	
NAME AND ADDRESS OF THE OWNER, TH		40.3	40.3		04.0		81.8	65.1	65.1	91,7	74.0	74.6
Actuated Green, G (s)	40.3		40.3	31.3	31.3	31,3				91.7	71.0 71.0	71.0
Effective Green, g (s)	40.3	40.3			31.3	31.3	81.8	65.1	65.1		10.000	
Actuated g/C Ratio	0.28	0.28	0.28	0.22	0.22	0.22	0.56	0.45	0.45	0.63	0.49	0.49
Clearance Time (s)	4.0	6.7	6.7	6.7	6.7	6.7	4.0	6.3	6.3	4.0	6.3	6.3
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	119	497	415	192	397	316	240	1587	618	308	1713	631
v/s Ratio Prot	c0.03	0.16			0.20		0.12	0.40		c0.15	c0.49	
v/s Ratio Perm	c0.24		0.04	0.10		0.16	0.45	2,000	0.02	0.46	444	0.19
v/c Ratio	0.99	0.56	0.13	0.44	0.91	0.76	1.01	0.89	0.05	0.96	1.00	0.38
Uniform Delay, d1	51.6	44.8	39.2	49.3	55.5	53.3	49.3	36.7	22.5	49.0	37.0	23.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	79.6	1.4	0.1	1.6	24.0	10.4	60.2	8.0	0.1	40.7	22.7	1.7
Delay (s)	131.2	46.1	39.4	50.9	79.5	63.7	109.5	44.7	22.6	89.6	59.7	24.9
Level of Service	F	D	D	D	E	E	F	D	C	F	E	(
Approach Delay (s)		60.9			69.0			53.0			58.8	
Approach LOS		Ε			Ε			D			E	
Intersection Summary												
HCM 2000 Control Delay			58.8	н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.03									
Actuated Cycle Length (s)	-		145.0	S	um of lost	time (s)			21.0			
Intersection Capacity Utiliza	ation		109.5%		U Level		1		н			
Analysis Period (min)	- Control of the Cont		15									
c Critical Lane Group			- 00									

Mudcreek TIS Synchro 11 Report TYLin Page 2 HCM Unsignalized Intersection Capacity Analysis 2: Proudfoot Lane & Beaverbrook Avenue

Future Total 2035 PM Peak Hour 06-13-2023

	1	-	*	1	•	•	4	†	-	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	26	78	260	13	38	47	171	15	36	98	15	12
Future Volume (vph)	26	78	260	13	38	47	171	15	36	98	15	12
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	26	78	260	13	38	47	171	15	36	98	15	12
Direction, Lane #	EB 1	WB1	NB 1	SB 1								
Volume Total (vph)	364	98	222	125								
Volume Left (vph)	26	13	171	98								
Volume Right (vph)	260	47	36	12								
Hadj (s)	-0.34	-0.23	0.16	0.13								
Departure Headway (s)	4.7	5.2	5.4	5.6								
Degree Utilization, x	0.47	0.14	0.33	0.19								
Capacity (veh/h)	727	624	607	584								
Control Delay (s)	11.8	9.0	11.1	9.9								
Approach Delay (s)	11.8	9.0	11.1	9.9								
Approach LOS	В	A	В	A								
Intersection Summary			-24-42-4									
Delay			11.0									
Level of Service			В									
Intersection Capacity Utiliza	ation		45.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

3: Proudfoot Lane & Oxford Street West

Timings

Future Total 2035 PM Peak Hour

		\rightarrow	1	•	-	1	T	-	-	+	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations	*	†	7	^	7	7	†	7	7	7.	
Traffic Volume (vph)	96	924	22	1502	559	197	347	40	356	191	
Future Volume (vph)	96	924	22	1502	559	197	347	40	356	191	
Turn Type	pm+pt	NA.	Perm	NA	custom	pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	5	2		6	3	7	4		3	8	
Permitted Phases	2		6		2	- 4		4	8		
Detector Phase	5	2	6	6	3	7	- 4	4	3	8	
Switch Phase											
Minimum Initial (s)	5.0	7.0	7.0	7.0	5.0	5.0	7.0	7.0	5.0	7.0	
Minimum Split (s)	9.0	23.6	23.6	23.6	9.0	9.0	31.4	31.4	9.0	31.4	
Total Split (s)	9.0	71.6	62.6	62.6	27.0	18.0	31.4	31.4	27.0	40.4	
Total Split (%)	6.9%	55.1%	48.2%	48.2%	20.8%	13.8%	24.2%	24.2%	20.8%	31.1%	
Yellow Time (s)	3.0	3.7	3.7	3.7	3.0	3.0	3.3	3.3	3.0	3.3	
All-Red Time (s)	1.0	1.9	1.9	1.9	1.0	1.0	3.1	3.1	1.0	3.1	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	5.6	5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Lead/Lag	Lead		Lag	Lag	Lead	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	67.6	66.0	57.0	57.0	90.6	40.6	25.0	25.0	54.4	34.8	
Actuated g/C Ratio	0.52	0.51	0.44	0.44	0.70	0.31	0.19	0.19	0.42	0.27	
v/c Ratio	0.83	0.66	0.15	0.98	0.57	0.53	0.97	0.11	1.01	0.60	
Control Delay	67.9	25.6	25.5	46.3	3.6	32.1	92.6	0.6	87.5	45.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	67.9	25.6	25.5	46.3	3.6	32.1	92.6	0.6	87.5	45.6	
LOS	E	C	C	D	A	C	F	A	F	D	
Approach Delay		29.1		34.6			65.9			69.1	
Approach LOS		C		C			E			E	

Intersection Summary Cycle Length: 130

Actuated Cycle Length: 130 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 120

TYLin

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.01

Analysis Period (min) 15

Intersection Signal Delay: 42.1 Intersection Capacity Utilization 103.2% Intersection LOS: D

ICU Level of Service G

Splits and Phases: 3: Proudfoot Lane & Oxford Street West

Mudcreek TIS Synchro 11 Report **TYLin** Page 3 Mudcreek TIS

HCM Signalized Intersection Capacity Analysis 3: Proudfoot Lane & Oxford Street West

Future Total 2035 PM Peak Hour

	•	-	*	1	•	•	1	Ť	~	1	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	†		7	^	7	7	•	7	7	14	
Traffic Volume (vph)	96	924	150	22	1502	559	197	347	40	356	191	87
Future Volume (vph)	96	924	150	22	1502	559	197	347	40	356	191	87
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.0	3.0	3.0	3.3	3.5	3.0	3.2	3.6	3.2	3.0	3.4	3.3
Total Lost time (s)	4.0	5.6		5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	1.00	0.93	1.00	1.00	0.94	1.00	0.99	
Flpb, ped/bikes	1.00	1.00		0.99	1.00	1.00	0.99	1.00	1.00	1.00	1.00	
Frt	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.95	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1620	3193		1601	3500	1383	1638	1863	1366	1665	1676	
Fit Permitted	0.07	1.00		0.20	1.00	1.00	0.56	1.00	1.00	0.14	1.00	
Satd. Flow (perm)	112	3193		333	3500	1383	967	1863	1366	242	1676	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	96	924	150	22	1502	559	197	347	40	356	191	87
RTOR Reduction (vph)	0	10	0	0	0	20	0	0	32	0	12	0
Lane Group Flow (vph)	96	1064	0	22	1502	539	197	347	8	356	266	0
Confi. Peds. (#/hr)	21		19	19		21	22		32	32		22
Heavy Vehicles (%)	4%	2%	2%	8%	2%	1%	4%	2%	4%	1%	6%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	5	0	0	0
Turn Type	pm+pt	NA		Perm	NA	custom	pm+pt	NA	Perm	pm+pt	NA	- 100
Protected Phases	5	2			6	3	7	4		3	8	
Permitted Phases	2			6		2	4		4	8		
Actuated Green, G (s)	66.0	66.0		57.0	57.0	89.0	38.2	25.0	25.0	52.0	34.8	
Effective Green, g (s)	66.0	66.0		57.0	57.0	89.0	38.2	25.0	25.0	52.0	34.8	
Actuated g/C Ratio	0.51	0.51		0.44	0.44	0.68	0.29	0.19	0.19	0.40	0.27	
Clearance Time (s)	4.0	5.6		5.6	5.6	4.0	4.0	6.4	6.4	4.0	6.4	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	114	1621		146	1534	946	352	358	262	348	448	
v/s Ratio Prot	0.03	c0.33			c0.43	0.10	0.06	0.19		c0.18	0.16	
v/s Ratio Perm	0.39			0.07		0.29	0.11		0.01	c0.23		
v/c Ratio	0.84	0.66		0.15	0.98	0.57	0.56	0.97	0.03	1.02	0.59	
Uniform Delay, d1	29.6	23.6		21.9	35.9	10.6	36.8	52.1	42.6	39.1	41.4	
Progression Factor	1.00	1.00		1.05	0.95	0.33	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	40.1	2.1		1.1	12.0	0.4	1.9	38.9	0.0	54.2	2.1	
Delay (s)	69.7	25.7		24.1	46.0	3.8	38.8	91.0	42.7	93.4	43.5	
Level of Service	E	C		C	D	Α	D	F	D	F	D	
Approach Delay (s)		29.3			34.4		1700	70.1	784	19397	71.5	
Approach LOS		C			С			E			E	
Intersection Summary												
HCM 2000 Control Delay			43.0	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.02			V1015						
Actuated Cycle Length (s)	on the contract		130.0	S	um of los	st time (s)			20.0			
Intersection Capacity Utiliza	ation		103.2%	IC	U Level	of Service	0		G			
intersection depacity office												

Mudcreek TIS Synchro 11 Report **TYLin** Page 5 Timings

Future Total 2035 PM Peak Hour 06-13-2023

4: Beaverbrook Avenue & Oxford Street West

WBL			7	Ť	-	-	+	4	
	Group EBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
	Configurations	1		4	7	7	1	76	
16 200	Volume (vph) 18	1972	35	92	195	129	37	22	
16 200	e Volume (vph) 18	1972	35	92	195	129	37	22	
IA pm+pt	Type Perm	NA	Perm	NA	Perm	pm+pt	NA	Perm	
2 1	cted Phases	6		8		7	4		
6	itted Phases 2		8		8	4		4	
2 1	tor Phase 2	6	8	8	8	7	4	4	
	h Phase					4			
.0 5.0	num Initial (s) 5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
.1 9.0	ium Split (s) 41.1	41.1	31.8	31.8	31.8	9.0	31.8	31.8	
.0 19.0	Split (s) 70.0	89.0	32.0	32.0	32.0	9.0	41.0	41.0	
% 14.6%	Split (%) 53.8%	68.5%	24.6%	24.6%	24.6%	6.9%	31.5%	31.5%	
.5 3.0	v Time (s) 3.5	3.5	3.3	3.3	3.3	3.0	3.3	3.3	
.6 1.0	ed Time (s) 3.6	3.6	2.5	2.5	2.5	1.0	2.5	2.5	
.0 0.0	Time Adjust (s) 0.0	0.0		0.0	0.0	0.0	0.0	0.0	
.1 4.0	Lost Time (s) 7.1	7.1		5.8	5.8	4.0	5.8	5.8	
ag Lead	Lag Lag		Lag	Lag	Lag	Lead	77.77		
es Yes	Lag Optimize? Yes		Yes	Yes	Yes	Yes			
ax None	I Mode C-Max	C-Max	None	None	None	None	None	None	
.2 95.5	ffct Green (s) 75.2	92.4		15.7	15.7	26.5	24.7	24.7	
58 0.73	ted g/C Ratio 0.58	0.71		0.12	0.12	0.20	0.19	0.19	
69 0.71	atio 0.32	0.89		0.66	0.56	0.63	0.10	0.06	
.4 26.5	ol Delay 24.9	17.2		70.5	13.0	58.5	42.0	0.3	
0.0	e Delay 0.0	0.3		0.0	0.0	0.0	0.0	0.0	
.4 26.5	Delay 24.9	17.4		70.5	13.0	58.5	42.0	0.3	
B C	C	В		E	В	E	D	A	
.5	ach Delay	18.2		35.7			48.4		
В	ach LOS	В		D			D		
	ection Summary								
	each Delay each LOS	5 B	.5 18.2 B B	5 18.2 B B	.5 18.2 35.7 B B D	.5 18.2 35.7 B B D	.5 18.2 35.7 B B D	.5 18.2 35.7 48.4 B B D D	.5 18.2 35.7 48.4 B B D D

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.89

Intersection Signal Delay: 20.0 Intersection Capacity Utilization 95.6% Analysis Period (min) 15 Intersection LOS: B

ICU Level of Service F

Splits and Phases: 4: Beaverbrook Avenue & Oxford Street West

Mudcreek TIS TYLin

HCM Signalized Intersection Capacity Analysis 4: Beaverbrook Avenue & Oxford Street West Future Total 2035 PM Peak Hour 06-13-2023

	,	-	*	1	•	•	4	†	-	1	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	1		7	1			4	7	*	†	7
Traffic Volume (vph)	18	1316	28	200	1972	202	35	92	195	129	37	22
Future Volume (vph)	18	1316	28	200	1972	202	35	92	195	129	37	22
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.7	3.3	3.3	3.0	3.5	3.5	3.3	3.3	3.3	3.7	3.7	3.7
Total Lost time (s)	7.1	7.1		4.0	7.1			5.8	5.8	4.0	5.8	5.8
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00		1.00	0.99			1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00			0.99	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1789	3349		1560	3424			1750	1473	1789	1883	1601
Fit Permitted	0.05	1.00		0.12	1.00			0.89	1.00	0.44	1.00	1.00
Satd. Flow (perm)	100	3349		197	3424			1586	1473	828	1883	1601
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	18	1316	28	200	1972	202	35	92	195	129	37	22
RTOR Reduction (vph)	0	1	0	0	5	0	0	0	171	0	0	18
Lane Group Flow (vph)	18	1343	0	200	2169	0	0	127	24	129	37	4
Confl. Peds. (#/hr)			12	12	71000	177	1070	100	7.0	177		
Heavy Vehicles (%)	2%	3%	0%	8%	2%	2%	0%	2%	6%	2%	2%	2%
Bus Blockages (#/hr)	0	4	0	0	4	0	0	5	0	0	0	(
Turn Type	Perm	NA		pm+pt	NA	151	Perm	NA	Perm	pm+pt	NA	Perm
Protected Phases	1.0111	2		1	6			8		7	4	
Permitted Phases	2			6			8		8	4		4
Actuated Green, G (s)	75.2	75.2		92.4	92.4			15.7	15.7	24.7	24.7	24.7
Effective Green, g (s)	75.2	75.2		92.4	92.4			15.7	15.7	24.7	24.7	24.7
Actuated g/C Ratio	0.58	0.58		0.71	0.71			0.12	0.12	0.19	0.19	0.19
Clearance Time (s)	7.1	7.1		4.0	7.1			5.8	5.8	4.0	5.8	5.8
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	57	1937		278	2433			191	177	194	357	304
v/s Ratio Prot	0.750	0.40		0.07	c0.63			18.7	18.5	c0.03	0.02	- 94
v/s Ratio Perm	0.18			0.44				0.08	0.02	c0.10		0.00
v/c Ratio	0.32	0.69		0.72	0.89			0.66	0.13	0.66	0.10	0.01
Uniform Delay, d1	14.1	19.3		16.7	14.8			54.6	51.1	48.8	43.5	42.8
Progression Factor	0.68	0.67		1.72	0.96			1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	9.7	1.4		2.4	1.5			8.4	0.3	8.3	0.1	0.0
Delay (s)	19.3	14.3		31.0	15.8			63.1	51.4	57.1	43.6	42.8
Level of Service	В	В		C	В			E	D	E	D	
Approach Delay (s)		14.4			17.1			56.0	180	11/0	52.8	100
Approach LOS		В			В			E			D	
2000 200 200												
Intersection Summary						Contract of the last	ACCORDING TO SECURE		7122			
Intersection Summary HCM 2000 Control Delay			20.7	Н	CM 2000	Level of !	Service		C			
	ity ratio		20.7 0.90	Н	CM 2000	Level of	Service		С			
HCM 2000 Control Delay	ity ratio				CM 2000 um of lost		Service		20.9			
HCM 2000 Control Delay HCM 2000 Volume to Capac	and the second		0.90	S		time (s)			-			

Mudcreek TIS Synchro 11 Report TYLin Synchro 12 Report Page 7

Timings 5: Oxford Street West & Cherryhill Boulevard Future Total 2035 PM Peak Hour

	•	-	1	-	1	†	-	Ţ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	14	1	14	7	1	*	4	#	
Traffic Volume (vph)	169	1444	8	2067	45	7	251	1	286	
Future Volume (vph)	169	1444	8	2067	45	7	251	1	286	
Turn Type	pm+pt	NA.	Perm	NA	Split	NA	Split	NA	pm+ov	
Protected Phases	5	2		6	7	7	4	4	5	
Permitted Phases	2		6						4	
Detector Phase	5	2	6	6	7	7	4	4	5	
Switch Phase										
Minimum Initial (s)	5.0	7.0	7.0	7.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	9.0	41.1	41.1	41.1	9.0	9.0	22.5	22.5	9.0	
Total Split (s)	14.0	98.4	84.4	84.4	9.0	9.0	22.6	22.6	14.0	
Total Split (%)	10.8%	75.7%	64.9%	64.9%	6.9%	6.9%	17.4%	17.4%	10.8%	
Yellow Time (s)	3.0	3.5	3.5	3.5	3.0	3.0	3.5	3.5	3.0	
All-Red Time (s)	1.0	3.6	3.6	3.6	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	7.1	7.1	7.1	4.0	4.0	4.5	4.5	4.0	
Lead/Lag	Lead		Lag	Lag	10,000		-		Lead	
Lead-Lag Optimize?	Yes		Yes	Yes					Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None	None	None	None	None	
Act Effct Green (s)	98.3	95.2	80.9	80.9	6.4	6.4	14.8	14.8	25.6	
Actuated g/C Ratio	0.76	0.73	0.62	0.62	0.05	0.05	0.11	0.11	0.20	
v/c Ratio	0.89	0.60	0.04	1.01	0.54	0.36	0.69	0.69	0.86	
Control Delay	80.6	4.4	11.9	47.2	83.6	38.1	74.5	74.3	55.6	
Queue Delay	0.0	0.0	0.0	10.6	0.0	0.0	0.0	0.0	0.2	
Total Delay	80.6	4.4	11.9	57.8	83.6	38.1	74.5	74.3	55.8	
LOS	F	A	В	E	F	D	E	E	E	
Approach Delay		12.3		57.6		64.3		64.5		
Approach LOS		В		E		E		E		
Intersection Summary										
Cycle Length: 130										
Actuated Cycle Length: 13										
Offset: 0 (0%), Referenced	to phase 2	EBTL an	d 6:WBTL	, Start of	Green					
Natural Cycle: 145	octorio contra de la contra del									
Control Type: Actuated-Co	ordinated									
Maximum v/c Ratio: 1.01				107						
Intersection Signal Delay:					tersection					
Intersection Capacity Utiliz	ation 96.5%			IC	U Level	of Service	e F			
Analysis Period (min) 15										
Dallia and Dhanna . T. O.	Land Charles	14/	the same de tra	and and						
Splits and Phases: 5: Or	xford Street	west & C	nerryhill i	Boulevard	33					

07 02 (R) 98.4s 96 (R) 96 (R)

Mudcreek TIS TYLin

169 1444

1900 1900

3.8

4.0

1.00

1.00

1.00

1.00

0.95

1677

0.05

84 3348

1.00

0

169

19

0

10%

pm+pt

94.4 94.4

0.73

4.0

3.0

187 2431

c0.07

0.58

0.90

45.3

1.57

32.5

103.8

3.3

7.1

0.95

1.00

1.00

1.00

1.00

3348

1.00

1.00

1444

1462

4

NA.

94.4

0.73

7.1

3.0

0.44

0.60

0.39

0.8

4.2

14.5

39.1

0.97 130.0

96.5%

15

19

1900

3.3

1.00

19

n

21

0

11%

8 2067

1900

3.3

7.1

0.95

1.00

1.00

1.00

1.00

3376

1.00

1.00

2067

2117

4

NA

80.1

7.1

3.0

c0.63

1.02

25.0

D

D

Sum of lost time (s)

ICU Level of Service

HCM 2000 Level of Service

49.1

1900

3.1

1.00

1.00

1.00

1.00

0.95

1696

0.17

301 3376

1.00

21

0

Perm

80.1 80.1

0.62 0.62

7.1

3.0

185 2080

0.04

1.00 1.00

0.4 24.3

10.3 49.2 51

1900

3.5

1.00

51

n

19 37

0

45

3.4

1.00

1.00 0.83

1.00

1.00

0.95

1713

0.95

1713

1.00

45

3%

Split

5.2

0.04

4.0

3.0

c0.03

0.66

1.00

21.6

83.1

0

1900

3.5

4.0

1.00

1.00

0.88

1.00

1373

1.00

1373

1.00

25

0

NA

5.2

0.04

4.0

3.0

54

0.01

0.15

60.3

1.00

13

61.5

74.0

Movement Lane Configurations Traffic Volume (vph) Future Volume (vph)

Lane Width

Ideal Flow (vphpl)

Total Lost time (s)

Lane Util. Factor

Frpb, ped/bikes

Flpb, ped/bikes

Satd. Flow (prot)

Satd. Flow (perm)

Adj. Flow (vph)

Peak-hour factor, PHF

RTOR Reduction (vph)

Lane Group Flow (vph)

Confi. Peds. (#/hr)

Heavy Vehicles (%)

Protected Phases Permitted Phases Actuated Green, G (s)

Turn Type

Bus Blockages (#/hr)

Effective Green, g (s)

Actuated g/C Ratio

Clearance Time (s)

Vehicle Extension (s)

Lane Grp Cap (vph)

v/s Ratio Prot

v/c Ratio

Delay (s) Level of Service

v/s Ratio Perm

Uniform Delay, d1

Progression Factor

Approach Delay (s)

Intersection Summary

HCM 2000 Control Delay

Actuated Cycle Length (s)

Analysis Period (min) c Critical Lane Group

Intersection Capacity Utilization

HCM 2000 Volume to Capacity ratio

Approach LOS

Incremental Delay, d2

Fit Protected

Fit Permitted

26 251

3.5

1.00

0

28 28

0

1900

3.2

0.95

1.00

1.00

1.00

0.95

1591

0.95

1591

1.00

251

125

0

Split

14.8

14.8

0.11

4.5

3.0

0.08

0.69

55.4

1.00

10.8

66.2

D

19.6

286

1900

3.6

4.0

1.00

0.95

0.85

1.00

1413

1.00

1413

1.00

286

55

231

37

0.19

4.0

3.0

272

0.10

1.00

21.2

71.8

3.3

4.5

0.95

1.00

1.00 1.00

1.00

0.95

1614

0.95

1614

1.00

127

0

14.8 25.1

14.8 25.1

0.11

4.5

3.0

183

0.08 c0.07

0.69 0.85

55.4 50.6

1.00

10.8

66.3

E

E

69.2

NA pm+ov

	1	-	•	1	←	•	1	†	-	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	1		7	T.	
Traffic Volume (veh/h)	133	10	109	21	5	13	128	302	31	12	469	167
Future Volume (Veh/h)	133	10	109	21	5	13	128	302	31	12	469	167
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	133	10	109	21	5	13	128	302	31	12	469	167
Pedestrians		35			19			23			20	
Lane Width (m)		3.7			3.7			3.1			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		3			2			2			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting valume	1205	1220	610	1222	1288	356	671			352		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1205	1220	610	1222	1288	356	671			352		
tC, single (s)	7.2	6.5	6.3	7.1	6.5	6.2	4.2			4.7		
tC, 2 stage (s)												
tF(s)	3.6	4.0	3.4	3.5	4.0	3.3	2.3			2.7		
p0 queue free %	0	93	76	77	96	98	85			99		
cM capacity (veh/h)	121	145	459	93	132	668	858			933		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						7
Volume Total	252	39	128	333	12	636						
Volume Left	133	21	128	0	12	0						
Volume Right	109	13	0	31	0	167						
cSH	179	138	858	1700	933	1700						
Volume to Capacity	1.41	0.28	0.15	0.20	0.01	0.37						
Queue Length 95th (m)	116.4	8.3	4.0	0.0	0.3	0.0						
Control Delay (s)	263.0	41.1	9.9	0.0	8.9	0.0						
Lane LOS	F	E	A		A							
Approach Delay (s)	263.0	41.1	2.8		0.2							
Approach LOS	F	E										
Intersection Summary												
Average Delay			49.5									Ť
Intersection Capacity Utiliza	ation		71.5%	IC	U Level	of Service			С			
Analysis Period (min)			15									

		-	•	•	-38.5	1	1	T		-	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	1		7	1	
Traffic Volume (veh/h)	133	10	109	21	5	13	128	302	31	12	469	167
Future Volume (Veh/h)	133	10	109	21	5	13	128	302	31	12	469	167
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	133	10	109	21	5	13	128	302	31	12	469	167
Pedestrians		35			19			23			20	
Lane Width (m)		3.7			3.7			3.1			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		3			2			2			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1205	1220	610	1222	1288	356	671			352		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1205	1220	610	1222	1288	356	671			352		
tC, single (s)	7.2	6.5	6.3	7.1	6.5	6.2	4.2			4.7		
tC, 2 stage (s)		1000	9000		10000	- 100						
tF(s)	3.6	4.0	3.4	3.5	4.0	3.3	2.3			2.7		
p0 queue free %	0	93	76	77	96	98	85			99		
cM capacity (veh/h)	121	145	459	93	132	668	858			933		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	10000			0.000		- 4
Volume Total	252	39	128	333	12	636						- 3
Volume Left	133	21	128	0	12	0						
Volume Right	109	13	0	31	0	167						
cSH	179	138	858	1700	933	1700						
Volume to Capacity	1.41	0.28	0.15	0.20	0.01	0.37						
Queue Length 95th (m)	116.4	8.3	4.0	0.0	0.3	0.0						
Control Delay (s)	263.0	41.1	9.9	0.0	8.9	0.0						
Lane LOS	F	Е	A	0.0	A	0.0						
Approach Delay (s)	263.0	41.1	2.8		0.2							
Approach LOS	F	E	2.0		0.2							
Intersection Summary												
Average Delay			49.5									
Intersection Capacity Utiliza	ation		71.5%	IC	U Level	of Service			С			
Analysis Period (min)	200000		15	- 67					10000			

Mudcreek TIS	Synchro 11 Report
TYLin	Page 9

Synchro 11 Report Mudcreek TIS TYLin Page 10 HCM Unsignalized Intersection Capacity Analysis 101: Beaverbrook Avenue & Street A/Westfield Drive

Future Total 2035 PM Peak Hour 06-13-2023

	•	-	•	1	•	•	4	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			44			4	
Traffic Volume (veh/h)	0	26	64	62	111	0	156	47	140	47	62	(
Future Volume (Veh/h)	0	26	64	62	111	0	156	47	140	47	62	(
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	0	26	64	62	111	0	156	47	140	47	62	(
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								140110			140110	
Upstream signal (m)								319				
pX, platoon unblocked								0.10				
vC, conflicting volume	640	655	62	662	585	117	62			187		
vC1, stage 1 conf vol	040	000	02	002	500		02			101		
vC2, stage 2 conf vol												
vCu, unblocked vol	640	655	62	662	585	117	62			187		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	7.1	0.0	0.2	1.1	0.0	0.2	4.1			4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	92	94	79	70	100	90			97		
cM capacity (veh/h)	269	335	1003	297	367	935	1541			1387		
			5 B 2 V		307	533	1041			1301		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	90	173	343	109								
Volume Left	0	62	156	47								
Volume Right	64	0	140	0								
cSH	636	339	1541	1387								
Volume to Capacity	0.14	0.51	0.10	0.03								
Queue Length 95th (m)	3.7	21.0	2.6	0.8								
Control Delay (s)	11.6	26.2	3.9	3.5								
Lane LOS	В	D	A	A								
Approach Delay (s)	11.6	26.2	3.9	3.5								
Approach LOS	В	D										
Intersection Summary												
Average Delay			10.2									
Intersection Capacity Utilization	1		48.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 11

HCM Unsignalized Intersection Capacity Analysis 102: Street B & Beaverbrook Avenue Future Total 2035 PM Peak Hour 06-13-2023

	→	7	1	•	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1.			4	*/*		
Traffic Volume (veh/h)	98	114	0	47	51	11	
Future Volume (Veh/h)	98	114	0	47	51	11	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	98	114	0	47	51	11	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting valume			212		202	155	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			212		202	155	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free %			100		94	99	
cM capacity (veh/h)			1358		787	891	
Direction, Lane #	EB 1	WB 1	NB 1		200	,,,	
Volume Total	212	47	62				
Volume Left	0	0	51				
Volume Right	114	0	11				
cSH	1700	1358	803				
Volume to Capacity	0.12	0.00	0.08				
Queue Length 95th (m)	0.0	0.0	1.9				
Control Delay (s)	0.0	0.0	9.9				
Lane LOS	0.0		A				
Approach Delay (s)	0.0	0.0	9.9				
Approach LOS	-	-	A				
Intersection Summary							
Average Delay			1.9				
Intersection Capacity Utilization	1		22.3%	IC	U Level o	f Service	A
Analysis Period (min)	e c		15	10	207010	100000000000000000000000000000000000000	11 4 E

 Muddreek TIS
 Synchro 11 Report

 TYLin
 Page 12

54

1.00 54

0%

406

6.5

4.0 3.3 100 963 100

485

1.00 1.00

1.00

460

7.1

3.5

452

3.3

1061

	1	•	†	-	1	↓			•	-	*	1	•	*	1	†
Movement	WBL	WBR	NBT	NBR	SBL	SBT		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT
Lane Configurations	W		14			4		Lane Configurat		45			4			4
Fraffic Volume (veh/h)	67	0	10	18	0	80		Traffic Volume (18	0	147	67	53	0	0
uture Volume (Veh/h)	67	0	10	18	0	80		Future Volume (0	147	67	53	0	0
Sign Control	Stop		Free			Free		Sign Control		Free			Free			Stop
Grade	0%		0%			0%		Grade		0%			0%			0%
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		Peak Hour Facto	or 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
fourly flow rate (vph)	67	0	10	18	0	80		Hourly flow rate		18	0	147	67	53	0	0
edestrians	-							Pedestrians	and the same of th							
ane Width (m)								Lane Width (m)								
Walking Speed (m/s)								Walking Speed	(m/s)							
Percent Blockage								Percent Blockag								
Right turn flare (veh)								Right turn flare (
Median type			None			None		Median type	vonj	None			None			
Median storage veh)			IVOITE			HOHE		Median storage	woh\	None			THORIC			
Jpstream signal (m)								Upstream signal								
X, platoon unblocked								pX, platoon unbi								
C, conflicting volume	99	19			28			vC, conflicting w				18			406	432
C1, stage 1 conf vol	99	19			20			vC1, stage 1 cor				10			400	432
C2, stage 2 conf vol	00	40			0.0			vC2, stage 2 cor				40			406	400
vCu, unblocked vol	99	19			28			vCu, unblocked				18				432
C, single (s)	6.4	6.2			4.1			tC, single (s)	4.1			4.1			7.1	6.5
C, 2 stage (s)								tC, 2 stage (s)								
F (s)	3.5	3.3			2.2			tF (s)	2.2			2.2			3.5	4.0
p0 queue free %	93	100			100			p0 queue free %				91			100	100
cM capacity (veh/h)	900	1059			1585			cM capacity (vel	νh) 1468			1599			517	469
Direction, Lane #	WB 1	NB 1	SB 1					Direction, Lane a	N. The state of th	WB 1	NB 1	SB 1				
Volume Total	67	28	80					Volume Total	18	267	54	18				
Volume Left	67	0	0					Volume Left	0	147	0	18				
Volume Right	0	18	0					Volume Right	0	53	54	0				
cSH	900	1700	1585					cSH	1468	1599	1061	452				
Volume to Capacity	0.07	0.02	0.00					Volume to Capa	city 0.00	0.09	0.05	0.04				
Queue Length 95th (m)	1.8	0.0	0.0					Queue Length 9		2.3	1.2	0.9				
Control Delay (s)	9.3	0.0	0.0					Control Delay (s		4.5	8.6	13.3				
Lane LOS	A							Lane LOS		A	A	В				
Approach Delay (s)	9.3	0.0	0.0					Approach Delay	(s) 0.0	4.5	8.6	13.3				
Approach LOS	A	0.0	0.0					Approach LOS	177	- 110	A	В				
Intersection Summary								Intersection Sun	nmary							
Average Delay			3.6					Average Delay			5.3					
Intersection Capacity Utiliza	ation		14.6%	1C	U Level	of Service	A	Intersection Cap	acity Utilization		35.9%	IC	U Level	of Service		
Analysis Period (min)	275,65710		15	- 10	00017500000	piocesierios:	5.50	Analysis Period			15		000000000000000000000000000000000000000	505555555555		

Mudcreek TIS Synchro 11 Report **TYLin** Page 13 Mudcreek TIS Synchro 11 Report TYLin Page 14

	1	•	1	-	1	Ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		1			4		
Traffic Volume (veh/h)	0	62	10	0	34	80		
Future Volume (Veh/h)	0	62	10	0	34	80		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourty flow rate (vph)	0	62	10	0	34	80		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)			110110			- 20110		
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	158	10			10			
vC1, stage 1 conf vol	100	10			10			
vC2, stage 2 conf vol								
vCu, unblocked vol	158	10			10			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.4	0.2			4.1			
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	94			98			
cM capacity (veh/h)	816	1071			1610			
		15000			1010			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	62	10	114					
Volume Left	0	0	34					
Volume Right	62	0	0					
cSH	1071	1700	1610					
Volume to Capacity	0.06	0.01	0.02					
Queue Length 95th (m)	1.4	0.0	0.5					
Control Delay (s)	8.6	0.0	2.3					
Lane LOS	A		A					
Approach Delay (s)	8.6	0.0	2.3					
Approach LOS	A							
Intersection Summary								
Average Delay			4.3					
Intersection Capacity Utiliza	ation		23.3%	IC	U Level o	of Service	A	
Analysis Period (min)			15					

	-	*	1	•	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	14		
Traffic Volume (veh/h)	0	0	0	0	0	0	
Future Volume (Veh/h)	0	0	0	0	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	0	0	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			0		0	0	
vC1, stage 1 conf vol						1,300	
vC2, stage 2 conf vol							
vCu, unblocked vol			0		0	0	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)					0.7	0.2	
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1623		1023	1085	
Direction, Lane #	EB 1	WB 1	NB 1		1020	1000	
Volume Total			0				
F-91001130, 1-91001	0	0					
Volume Left		0	0				
Volume Right	0						
cSH	1700	1700	1700				
Volume to Capacity	0.00	0.00	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilizati	ion		0.0%	IC	U Level o	of Service	A
Analysis Period (min)			15				

Synchro 11 Report Page 15 Mudcreek TIS TYLin

Synchro 11 Report Page 16 Mudcreek TIS TYLin

	→	*	-	-	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	*	7	
Traffic Volume (veh/h)	0	0	0	0	0	0	
Future Volume (Veh/h)	0	0	0	0	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	0	0	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	. 10110						
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			0		0	0	
vC1, stage 1 conf vol					-		
vC2, stage 2 conf vol							
vCu, unblocked vol			0		0	0	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)			7,1		0.4	2500	
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1623		1023	1085	
Direction, Lane #	EB 1	WB 1	NB 1	NB2	1020	,,,,,,	
- Contract of the Contract of			10000000				
Volume Total	.0	0	0	0			
Volume Left	0	0	0	0			
Volume Right	0	0	0	0			
cSH	1700	1700	1700	1700			
Volume to Capacity	0.00	0.00	0.00	0.00			
Queue Length 95th (m)	0.0	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0	0.0			
Lane LOS		0.0	A	A			
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		0.0%	IC	U Level o	of Service	Α
Analysis Period (min)			15				

	1	-	•	•	-	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	7.		14			
Traffic Volume (veh/h)	0	0	0	0	0	0		
Future Volume (Veh/h)	0	0	0	0	0	0		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	0	0	0	0	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	0				0	0		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	0				0	0		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)	711				2571	0.2		
tF(s)	2.2				3.5	3.3		
p0 queue free %	100				100	100		
cM capacity (veh/h)	1623				1023	1085		
Direction, Lane #	EB 1	WB 1	SB 1			000000		
Volume Total	0	0	0					
Volume Left	0	0	0					
Volume Lent Volume Right	0	0	0					
cSH	1700	1700	1700					
Volume to Capacity	0.00	0.00	0.00					
Queue Length 95th (m)	0.00	0.00	0.00					
Control Delay (s)	0.0	0.0	0.0					
Lane LOS	0.0	0.0						
	0.0	0.0	0.0					
Approach Delay (s)	0.0	0.0	0.0 A					
Approach LOS			A					
Intersection Summary								
Average Delay			0.0					
Intersection Capacity Utilization	n		0.0%	IC	U Level o	of Service	A	
Analysis Period (min)			15					

 Mudcreek TIS
 Synchro 11 Report

 TYLin
 Page 17

 Muddreek TIS
 Synchro 11 Report

 TYLin
 Page 18