Welcome!

Public Information Centre (PIC) No. 1
Clarke Road Improvements
Municipal Class
Environmental Assessment (EA)

From the Future Veterans Memorial Parkway Extension to Fanshawe Park Road East

Please *SIGN IN*.

Members of the project team are available to answer any questions you may have.
The study area includes the Clarke Road corridor from its intersection with the future Veterans Memorial Parkway (VMP) extension (currently under detailed design) to its intersection with Fanshawe Park Road East.

Intersections within the study area:
- Future VMP Extension
- Kilally Road
- Fanshawe Park Road East

Structures within the study area:
- J.W. Carson Bridge over the North Branch of the Thames River (North Branch)
The Municipal Class EA is an approved process under the Ontario Environmental Assessment Act which municipalities follow for the planning and design of municipal infrastructure projects. The process:

- Identifies needs, problems and opportunities
- Considers a range of reasonable solutions
- Requires public, agency, and Indigenous community consultation
- Documents the decision making process in a clear and transparent manner.

This study is being planned as a **Schedule ‘C’** project, which involves the completion of **Phases 1 through 4** of the planning process.
Background Information and Related Studies

• **Transportation Development Charge Background Study (2014)** identified the widening of Clarke Road from **2 to 4 lanes**, with a recommended construction year of 2021.

• **The London 2030 Transportation Master Plan (TMP)** identified the widening of Clarke Road from the future VMP Extension to Fanshawe Park Road from **2 to 6 lanes** within 15-20 years.

• The detailed design of the **VMP Extension** from Huron Street to Clarke Road is underway. The project includes a 2 lane rural cross section (with an ultimate 6 lane cross section) and signalization of the Fanshawe Conservation Area/Clarke Road intersection.

• **VMP Interchange Class EA Study (2008)** identified interchange locations along the entire length of the VMP corridor to accommodate growth within a 30-50 year period.

This EA study will refine the recommendations of the above studies and will coordinate with the detailed design of the future VMP Extension.
City of London Official Plan (1989)

- Clarke Road is designated as an Arterial Road and is intended to service high volumes of intra-urban traffic at moderate speeds, and has controlled or limited property access.

The London Plan (2016)

- Clarke Road is designated as an Expressway, intended to provide priority to vehicles and freight movement, move high volumes of vehicular traffic, and provide a quality standard of urban design to promote the City.
London ON Bikes – Cycling Master Plan (2016)

• Identifies paved shoulders along Clarke Road.

• Identifies desired multi-use pathway connections and includes a crossing at the J.W. Carson Bridge over the Thames River as part of the City’s Thames Valley Parkway.

Due to the high speeds and volumes of traffic on Clarke Road, this Class EA will consider a range of active transportation facilities in accordance with the guidelines provided in the Ontario Traffic Manual Book 18 – Cycling Facilities. Example facilities are provided below:
• Land use around the study area includes “Neighbourhoods”, “Green Space”, and “Farmland” north of the City’s Urban Growth Boundary.

• Existing and future industrial lands are located south of the study area, and the London International Airport is located to the southeast.

• The Fanshawe Conservation Area and Pioneer Village is located east of Clarke Road, which has a number of hiking and biking trails, and other recreational amenities.
An Environmental Impact Study (EIS) is being completed to characterize existing conditions within the study area, identify environmental features, and to identify mitigation measures to address the impacts of road widening. The EIS includes the following field studies:

- 3 season vegetation inventory;
- Breeding & migratory birds;
- Amphibians, reptiles (basking and roadkill);
- Significant wildlife habitat assessment; and
- Aquatic habitat assessment.
Water
• 1200mm diameter trunk watermain is present on the east side of Clarke Road and crosses under the Thames River.
• Plans exist for a new 400mm diameter watermain along Kilally Road, extending from the intersection at Clarke Road westerly.

Sanitary Servicing
• The 2014 Wastewater Servicing Master Plan identifies oversizing of a sanitary sewer along Kilally Road to Clarke Road, and other sanitary upgrades to service new development.

Utilities
• A Hydro One transmission tower line/easement, London Hydro, Bell Canada facility and Union Gas facility are present along the east side of Clarke Road.

Existing and planned municipal infrastructure within the corridor may be impacted, or may impact this planning process. Consultation with relevant City departments and utilities is ongoing to confirm existing issues and potential capital and maintenance upgrades that are anticipated along the corridor.
Archaeology

- A Stage 1-2 Archaeological Assessment will be completed within the study area to identify areas of archaeological potential and impacts of road improvements.

Cultural Heritage

- A Cultural Heritage Evaluation Report is underway along the corridor to identify potential built cultural heritage resources, and cultural heritage landscapes.
- Potential cultural heritage resources include:
 - J.W. Carson Bridge - >40 years old; dedication plaque on SW side to J.W. Carson, Chair of London Roads Commission from 1930s-1960s.
 - Upper Thames Conservation Authority/Fanshawe Conservation Area
 - 1511 Clarke Road – Farmstead c. 1860s and “listed” on the City of London Heritage Inventory
 - 1588 Clarke Road – Farmstead c. 1860s and “listed” on the City of London Heritage Inventory
Existing Conditions

J. W. Carson Bridge over the Thames River

- The bridge is a four-span, slab on steel girder bridge with a total length of about 140m and was built in 1967.
- Potential improvements to the existing bridge and piers may require in-water work. This is a major area of focus due to the sensitivity of the Thames River.
- A Cultural Heritage Evaluation Report for the bridge is underway due to the age of the structure (>40 years old) to determine the presence of cultural heritage value.
- Widening options will be reviewed during the next phase of the study including:
 - Widening/twinning of the bridge to the east
 - widening/twinning of the bridge to the west
 - widening the bridge symmetrically
To determine the transportation needs in the study area, capacity and level of service (LOS) calculations are performed for each intersection and roadway section for the following scenarios:

1. Without improvements (“Do Nothing”):
 a. Existing traffic volumes
 b. Future traffic volumes in design horizon (2031)
2. With proposed improvements to the roadway system:
 a. Existing traffic volumes;
 b. Future traffic volumes in design horizon (2031)

Level of Service (LOS)

<table>
<thead>
<tr>
<th>Level of Service (LOS)</th>
<th>What does it mean?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Free flowing traffic with minimal delays. All traffic clears on green. Acceptable</td>
</tr>
<tr>
<td>B</td>
<td>Free flowing traffic with minimal delays. Most traffic clears on green. Acceptable</td>
</tr>
<tr>
<td>C</td>
<td>Uniform traffic flow with moderate delays. Some movements will not clear on green. Acceptable</td>
</tr>
<tr>
<td>D</td>
<td>Congestion is noticeable. Poor progression with frequent stops and increased delay. Many movements at capacity and will not clear on green. Acceptable</td>
</tr>
<tr>
<td>E</td>
<td>Poor traffic flow with frequent stops and high delays. Most movements over capacity and traffic rarely clears on first green. Marginal</td>
</tr>
<tr>
<td>F</td>
<td>Forced flow conditions with severe congestion. Most movements over capacity with long queues that to not clear on green. Not acceptable</td>
</tr>
</tbody>
</table>

Intersection and roadway improvements should be recommended where:

- Overall intersection LOS as well as individual movement LOS is worse than ‘D’
- Volume/capacity ratios for overall intersection operations, through movements or shared through/turning movements increase to 0.85 or above
- Volume/capacity ratios for exclusive movements increase to 0.95 or above.
Clarke Road, within the study area, is a two-lane Arterial Road with a posted speed limit of 80km/h. There are no active transportation facilities within the study area. LTC buses run along Fanshawe Park Rd, down Clarke to the Conservation area in the summer (June-August only) - the "Fanshawe Getaway" route.

- A preliminary traffic analysis has been completed to identify baseline traffic conditions and operations along the corridor.
- Clarke Road carries an average of 17,000 vehicles per day.
- Under existing conditions, a number of intersections within the study area are operating at-capacity, and with moderate-to-excessive delays during the AM and PM peak hours.

Capacity and LOS calculations will be performed for future traffic volumes with and without proposed improvements (i.e., additional travel lanes, intersection improvements).
Based on the review of existing conditions, servicing studies, planning documents, development proposals, preliminary traffic studies and collision data, the following summarizes the problems and opportunities within the study area:

Growth Management
- Need to accommodate growth of traffic on Clarke Road as a result of the future VMP extension, industrial development south of the study area, and residential development in the area

Intersection Issues
- Decreased level of service at intersections within the study area and require modifications, including turning lanes, improved traffic control or roundabouts

Active Transportation
- Need to improve active transportation facilities within the study area and provide system connections, including transit and active transportation connections (as per the City’s Cycling Master Plan and the London Plan)

Improvements to the Clarke Road corridor are needed to accommodate increased traffic volumes as a result of the future VMP extension, and future industrial and residential development in the area. The improved transportation corridor will serve the needs of the transportation system including active transportation and area growth to 2031 and beyond.
Alternative solutions identified for the study area include:

- **Alternative 1: Do Nothing** - No proposed changes within the study area; provides a basis to compare other alternatives.
- **Alternative 2: Improve Other Roads in the Transportation Network** - Introduce improvements to adjacent and/or parallel roadways to reduce travel demand on Clarke Road.
- **Alternative 3: Accommodate Other Travel Modes** - Introduce improvements to accommodate transit services and encourage active transportation.
- **Alternative 4: Provide Additional Travel Lanes & Intersection Improvements** - Introduce additional travel lanes along Clarke Road to increase vehicular capacity, and introduce improvements to intersections (i.e. roundabouts, traffic signals) within the study area to improve traffic movement and safety.

Evaluation Summary

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Evaluation Summary</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 - Do Nothing</td>
<td>Does not address problems and opportunities identified in the study area.</td>
<td>Not recommended for further consideration (for comparison purposes only).</td>
</tr>
<tr>
<td>Alternative 2 - Improve Other Roads in the Network</td>
<td>There are no feasible parallel routes that will address corridor deficiencies along Clarke Road, and does not address the City’s transportation planning objectives.</td>
<td>Not recommended for further consideration.</td>
</tr>
<tr>
<td>Alternative 3 - Accommodate Other Traffic Modes</td>
<td>There are no existing transit or active transportation facilities. Although improvements will likely have negligible impacts on traffic, this alternative is aligned with the City’s long term goals and objectives.</td>
<td>Carry forward for further consideration as part of the recommended alternative solution.</td>
</tr>
<tr>
<td>Alternative 4 - Provide Additional Travel Lanes & Intersection Improvements</td>
<td>A widened road cross section will provide an opportunity for improved travel time with additional lane capacity; space for on-road cycling facilities; and, safety. Intersection improvements are required to improve the level of service.</td>
<td>Carry forward for further consideration as part of the recommended alternative solution.</td>
</tr>
</tbody>
</table>
Legend

- Potential Property Impacts
- Existing Watermain
- Existing Gas Main

Cycling facility type, location and utility corridor property impacts to be determined.

Intersection improvements to be determined.
Legend
- Potential Property Impacts
- Existing Watermain
- Existing Gas Main

Cycling facility type, location and utility corridor property impacts to be determined.

Clarke Road Improvements Municipal Class EA
Public Information Centre No. 1
Thursday, September 21, 2017
Stantec
Representative roadway cross sections for the preliminary design alternatives are shown below:

*Cycling facility type, location, and utility corridor property impacts to be determined
Alternative Designs will be developed to implement the recommended solutions, and will be evaluated against the following criteria:

Socio-Economic Environment
- Existing/future land uses
- Industrial uses
- Recreational uses
- Property impacts
- Property access
- Noise levels
- Accommodation of pedestrians and cyclists
- Illumination
- Air quality

Natural Environment
- Terrestrial habitats and wildlife
- Species at risk
- Aquatic habitats and species
- Drinking water source protection

Cultural Environment
- Built heritage resources
- Cultural heritage landscapes
- Archaeological resources

Transportation
- Corridor capacity and operations
- Intersection capacity and operations
- Geometric standards
- Access management

Engineering Considerations
- Structural requirements (J.W. Carson Bridge/culverts)
- Municipal services/utilities, including Hydro One corridor
- Construction costs
- Construction staging
- Drainage and stormwater management
Next Steps

• **Review, address and incorporate comments received** on the existing conditions, the recommended alternative solutions and preliminary design alternatives.

• Confirm the **Preferred Solution**.

• Develop **Design Alternatives** to implement the preferred solution.

• Host **PIC No. 2** to get input on design alternatives and preliminary recommendations (tentatively winter 2018).

• Prepare an **Environmental Study Report** (ESR) to document the Class EA process. The ESR will be available to review for a minimum of 30 days.
THANK YOU FOR COMING!

Information presented here will be available on the City’s website:
http://www.london.ca/residents/Environment/EAs/Pages/Clarke-Road-Improvements.aspx

We encourage you to fill out a comment form. Please place forms in the box provided or mail, fax, or email comments to the project team by Thursday October 19, 2017.

Isaac Bartlett, P. Eng., ENV SP
Project Manager
Stantec Consulting Ltd.
600-171 Queens Ave
London, ON N6A 5J7
P: 519-675-6643
F: 519-645-6575
E: isaac.bartlett@stantec.com

Ardian Spahiu, P.Eng.
Transportation Design Engineer
Transportation Planning & Design
City of London
300 Dufferin Street PO Box 5035
London, ON N6A 4L9
P: 519-661-CITY (2489) ext. 4738
F: 519-661-4734
E: aspahiu@london.ca